M. A. Herman H. Sitter

Molecular Beam Epitaxy
Fundamentals and Current Status

With 249 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Contents

Part I Background Information

1. Introduction ... 1
 1.1 Thin Film Growth from Beams in a High Vacuum Environment 2
 1.1.1 Vacuum Conditions for MBE 3
 1.1.2 Basic Physical Processes in the MBE Vacuum Chamber 6
 1.2 Evolution of the MBE Technique 13
 1.2.1 The Early Stages of MBE 13
 1.2.2 MBE in the 1980s .. 16
 1.3 Modifications of the MBE Technique 16
 1.3.1 Gas Source MBE .. 17
 1.3.2 Phase-Locked Epitaxy 19
 1.3.3 Atomic Layer Epitaxy 23
 1.3.4 FIBI-MBE Processing Technology 25
 1.3.5 A Classification Scheme for the MBE Techniques 27

Part II Technological Equipment

2. Sources of Atomic and Molecular Beams 29
 2.1 The Effusion Process and the Ideal Effusion Cell 30
 2.1.1 Langmuir and Knudsen Modes of Evaporation 31
 2.1.2 The Cosine Law of Effusion 32
 2.2 Effusion from Real Effusion Cells 35
 2.2.1 The Near-Ideal Cylindrical Effusion Cell 35
 2.2.2 The Cylindrical Channel Effusion Cell 43
 2.2.3 Hot-Wall Beam Cylindrical Source 44
 2.2.4 The Conical Effusion Cell 48
 2.3 Effusion Cells Used in CPS MBE Systems 53
 2.3.1 Conventional Effusion Cells 53
 2.3.2 Dissociation (Cracker) Effusion Cells 58
 2.3.3 Electron Beam and Laser Radiation Heated Sources ... 62
 2.4 Beam Sources Used in GS MBE Systems 69
 2.4.1 Arsine and Phosphine Gas Source Crackers 69
 2.4.2 Gas Sources Used in MO MBE 71
3. High Vacuum Growth and Processing Systems
 3.1 Building Blocks of Modular MBE Systems
 3.1.1 The Cassette Entry Stage
 3.1.2 The Interstage Substrate Transfer System
 3.1.3 The Preparation and Analysis Stages
 3.1.4 The MBE Deposition Chamber
 3.1.5 Beam Sources
 3.1.6 Monitoring and Analytical Facilities
 3.2 Multiple-Growth and Multiple-Process Facilities in MBE Systems
 3.2.1 The Hot-Wall Beam Epitaxy Growth System
 3.2.2 Focused Ion Beam Technology

Part III Characterization Methods

4. In-Growth Characterization Techniques
 4.1 RHEED
 4.1.1 Fundamentals of Electron Diffraction
 4.1.2 Origin of RHEED Features
 4.1.3 RHEED Data from Reconstructed Semiconductor Surfaces
 4.1.4 RHEED Rocking Curves
 4.1.5 RHEED Intensity Oscillations
 4.2 Ellipsometry
 4.2.1 Fundamentals of Ellipsometry
 4.2.2 Ellipsometric Systems Used for In-Growth Analysis in MBE

5. Postgrowth Characterization Methods
 5.1 Survey of Postgrowth Characterization Methods
 5.2 Auger Electron Spectroscopy
 5.2.1 Chemical Composition of Solid Surfaces
 5.2.2 Sputter Depth Profiling
 5.3 X-Ray Diffraction
 5.3.1 Diffraction Under Nonideal Conditions
 5.3.2 High Resolution X-Ray Diffraction
 5.3.3 X-Ray Diffraction at Multilayers and Superlattices
 5.4 Photoluminescence
 5.4.1 Photoluminescence in Binary Compounds
 5.4.2 Photoluminescence in Ternary and Quaternary Compounds
 5.4.3 Photoluminescence of Quantum Well Structures and Superlattices
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.3 Growth of $\text{Al}x\text{Ga}{1-x}\text{As}/\text{GaAs}$ Heterostructures</td>
<td>314</td>
</tr>
<tr>
<td>7.2.4 Growth of GaAs on Si Substrates</td>
<td>321</td>
</tr>
<tr>
<td>7.2.5 Device Structures Grown by GaAs MBE</td>
<td>327</td>
</tr>
<tr>
<td>7.3 Narrow-Gap II–VI Compounds Containing Hg</td>
<td>332</td>
</tr>
<tr>
<td>7.3.1 Substrates for MBE of Hg Compounds</td>
<td>333</td>
</tr>
<tr>
<td>7.3.2 Hg-Compound Heterostructures Grown by MBE</td>
<td>337</td>
</tr>
<tr>
<td>7.3.3 Device Structures</td>
<td>338</td>
</tr>
<tr>
<td>Part V Conclusion</td>
<td></td>
</tr>
<tr>
<td>8. Outlook</td>
<td>341</td>
</tr>
<tr>
<td>8.1 Miscellaneous Material Systems Grown by MBE</td>
<td>341</td>
</tr>
<tr>
<td>8.2 MBE-Related Growth Techniques</td>
<td>346</td>
</tr>
<tr>
<td>8.3 Development Trends of the MBE Technique</td>
<td>349</td>
</tr>
<tr>
<td>References</td>
<td>351</td>
</tr>
<tr>
<td>Subject Index</td>
<td>379</td>
</tr>
</tbody>
</table>