Flexible Manufacturing Systems in Practice

Applications, Design, and Simulation

Joseph Talavage
Purdue University
West Lafayette, Indiana

Roger G. Hannam
University of Manchester Institute of Science and Technology
Manchester, England

MARCEL DEKKER, INC. New York and Basel
Contents

Preface iii
Acknowledgments vii

1 Introduction 1
 1.1 A Historical Perspective 1
 1.2 A Preview of FMS Design 3
 1.3 Manufacturing Systems 6
 1.4 Flexible Manufacturing 9

2 The Development of Manufacturing Systems 13
 2.1 The Coming of Specialization 13
 2.2 The Beginning of Mass Production 15
 2.3 Transfer Machines and Link Lines 18
 2.4 Batch Production 25
 2.5 Review 34
 References 34

3 Flexible Manufacturing Systems—Their Development and Benefits 37
 3.1 Pioneering Integrated Systems 37

ix
3.2 Pioneering Flexible Systems 44
3.3 Flexibility Examined 59
3.4 The Advantages of FMS 63
3.5 Difficulties with FMS 70
References 71

4 Pallets, Fixtures, and Machines 73
4.1 Introduction 73
4.2 Pallets for Prismatic Parts 74
4.3 Fixtures for Prismatic Parts 78
4.4 Pallets and Fixtures for Turned Parts 84
4.5 Prismatic Part Machines 88
4.6 Turned-Part Machines 97
References 100

5 Work-Handling and System Layouts 103
5.1 Work-Handling Equipment 103
5.2 Roller Conveyors 105
5.3 Machine Shuttles and System Storage 110
5.4 Tow Carts 114
5.5 Rail Carts 117
5.6 Automatic Guided Vehicles 122
5.7 Stacker Cranes 127
5.8 Robots 129
5.9 Building Systems from Islands of Automation 132
References 135

6 System Management and the Developing Scene 137
6.1 Introduction 137
6.2 The Control of FMS 138
6.3 The Manning of FMS 145
6.4 Tool Management 150
6.5 Controlling Precision 156
6.6 The Developing FMS Scene 158
6.7 Review 168
References 171

7 Simulation and Analysis in the Design of FMS 173
7.1 Introduction 173
7.2 The Designer's Dilemma 175
7.3 Modeling Approaches to Solve the Designer's Dilemma 176
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Model Can Assess the Need for Resources</td>
<td>178</td>
</tr>
<tr>
<td>7.5</td>
<td>The FMS Environment</td>
<td>180</td>
</tr>
<tr>
<td>7.6</td>
<td>Integration of Modeling Methods</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>182</td>
</tr>
<tr>
<td>8</td>
<td>Simulation Modeling</td>
<td>183</td>
</tr>
<tr>
<td>8.1</td>
<td>Three Approaches to Simulation Modeling for FMS</td>
<td>183</td>
</tr>
<tr>
<td>8.2</td>
<td>Network Simulation Modeling</td>
<td>186</td>
</tr>
<tr>
<td>8.3</td>
<td>Data-Driven Simulation Procedures</td>
<td>198</td>
</tr>
<tr>
<td>8.4</td>
<td>Databases for Simulation</td>
<td>210</td>
</tr>
<tr>
<td>8.5</td>
<td>Simulation Using a Base Programming Language</td>
<td>211</td>
</tr>
<tr>
<td>8.6</td>
<td>Simulation Procedure Comparison for FMS Design</td>
<td>212</td>
</tr>
<tr>
<td>8.7</td>
<td>Summary</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>9</td>
<td>Network-of-Queue Modeling</td>
<td>217</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>9.2</td>
<td>Relationship of n-o-q Models to Simulation</td>
<td>218</td>
</tr>
<tr>
<td>9.3</td>
<td>Classical n-o-q Approach</td>
<td>220</td>
</tr>
<tr>
<td>9.4</td>
<td>Mean-Value Analysis: A Second n-o-q Approach</td>
<td>228</td>
</tr>
<tr>
<td>9.5</td>
<td>Operational Analysis Approach to n-o-q Models</td>
<td>236</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Appendix: Product-Form Solution for Classical Approach</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>243</td>
</tr>
<tr>
<td>10</td>
<td>Network-of-Queue Analysis as a Design Aid for FMS</td>
<td>245</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>245</td>
</tr>
<tr>
<td>10.2</td>
<td>"Rough-Cut" FMS Design</td>
<td>245</td>
</tr>
<tr>
<td>10.3</td>
<td>Sensitivity of Performance Measures for n-o-q Models</td>
<td>252</td>
</tr>
<tr>
<td>10.4</td>
<td>Interpretation of Sensitivity Results</td>
<td>260</td>
</tr>
<tr>
<td>10.5</td>
<td>Sensitivity Data to Aid FMS Design</td>
<td>260</td>
</tr>
<tr>
<td>10.6</td>
<td>Summary</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>264</td>
</tr>
<tr>
<td>11</td>
<td>Simulation for FMS Design</td>
<td>265</td>
</tr>
<tr>
<td>11.1</td>
<td>Simulation Models Based on n-o-q Models of FMS</td>
<td>265</td>
</tr>
<tr>
<td>11.2</td>
<td>Uncontrollable Factors in Design</td>
<td>271</td>
</tr>
<tr>
<td>11.3</td>
<td>Types of U-Factors in FMS</td>
<td>275</td>
</tr>
<tr>
<td>11.4</td>
<td>Consideration of U-Factors in FMS Design</td>
<td>276</td>
</tr>
</tbody>
</table>
11.5 Design of Experiments Accounting for U-Factors
11.6 Simulation Output Analysis Under Uncertainty
11.7 Automated Design Via Simulation
11.8 Graphical Output from Simulation
11.9 Future Use of Simulation in Design of FMS

References

12 Prescriptive Tools for FMS Design
12.1 Introduction
12.2 Linear Programming
12.3 MP Problems in FMS Design and Control
12.4 MP Methodology for FMS Operational Planning Problems
12.5 Summary
References

13 Economic Justification of FMS
13.1 Introduction
13.2 Flexible Manufacturing Module
13.3 Models to Aid Economic Justification
13.4 Justifying Flexibility
13.5 Economic Justification: A Dissenting View
13.6 Summary
References

14 Artificial Intelligence in the Design of FMS
14.1 Introduction
14.2 LISP
14.3 PROLOG
14.4 Expert Systems
14.5 Expert Systems in FMS Design and Control
14.6 Integrative Aspects of AI Languages
14.7 Summary
References

Index