Introduction to Expert Systems

Peter Jackson
West Group, Rochester, NY
Contents

Preface

1. **What Are Expert Systems?**

 1.1 The nature of expertise
 1.2 The characteristics of an expert system
 1.3 Fundamental topics in expert systems
 1.3.1 Acquiring knowledge
 1.3.2 Representing knowledge
 1.3.3 Controlling reasoning
 1.3.4 Explaining solutions
 1.4 Summary and chapter plan
 1.4.1 What is the state of the art?
 1.4.2 Chapter plan of the book
 Bibliographical notes
 Study suggestions

2. **An Overview of Artificial Intelligence**

 2.1 The Classical Period: game playing and theorem proving
 2.1.1 State space research
 2.1.2 Heuristic search
 2.2 The Romantic Period: computer understanding
 2.2.1 SHRDLU
 2.2.2 Knowledge representation schemes
 2.3 The Modern Period: techniques and applications
 2.3.1 Knowledge is power
 2.3.2 'AI winter' and 'AI spring'
 Bibliographical notes
 Study suggestions

3. **Knowledge Representation**

 3.1 The representation of knowledge: principles and techniques
 3.2 The STRIPS planner
 3.2.1 Operator tables and means–ends analysis
 3.2.2 Assessment of STRIPS representation and control
 3.3 Subgoaling in MYCIN
 3.3.1 Treating blood infections
 3.3.2 MYCIN’s knowledge base
 3.3.3 MYCIN’s control structure
4.1 Symbolic representation 61
4.2 Physical symbol systems 61
4.3 Implementing symbol structures in LISP 62
4.3.1 LISP data structures 63
4.3.2 LISP programs 64
4.3.3 Functional application and lambda conversion 66
4.3.4 List processing 67
4.3.5 Pattern matching 69
4.4 Why LISP isn't a knowledge representation language 71
4.4.1 Symbol level versus knowledge level 71
4.4.2 LISP and program design 71
4.5 Languages for knowledge representation 72
Bibliographical notes 74
Study suggestions 74

5.1 Canonical systems 77
5.2 Production systems for problem solving 78
5.2.1 The syntax of rules 78
5.2.2 The working memory 81
5.3 Controlling the behavior of the interpreter 85
5.3.1 Conflict resolution 85
5.3.2 Forward and backward chaining 87
5.3.3 Rules and meta-rules 93
Bibliographical notes 96
Study suggestions 96

6.1 Graphs, trees and networks 100
6.2 The rise of associative networks 104
6.2.1 The type-token distinction and cognitive economy 104
6.2.2 Assessing the adequacy of associative nets 105
6.3 Representing typical objects and situations 107
6.3.1 Introduction to frame concepts 107
6.3.2 Complex nodes in a network 108
6.3.3 Defaults and demons 109
6.3.4 Multiple inheritance and ambiguity 112
6.3.5 Comparing nets and frames 115
Bibliographical notes 116
Study suggestions 116

7 Object-Oriented Programming 120

7.1 Prototypes, perspectives and procedural attachment 121
7.2 LOOPS and Flavors 123
7.2.1 Message passing 123
7.2.2 The method combination problem 125
7.2.3 Metaclasses 127
7.3 CLIPS and the Common LISP Object System (CLOS) 129
7.3.1 Multiple inheritance in CLOS and CLIPS 129
7.3.2 Method combination in CLOS and CLIPS 131
7.3.3 Metaclasses in CLOS and CLIPS 133
7.4 Multiple inheritance in C++ 135
7.5 Object-oriented analysis and design for expert systems 140
Bibliographical notes 141
Study suggestions 141

8 Logic Programming 143

8.1 Formal languages 143
8.1.1 Propositional calculus 144
8.1.2 The predicate calculus 145
8.2 The PROLOG language 148
8.3 Resolution refutation 149
8.3.1 The resolution principle 149
8.3.2 Proof search in resolution systems 151
8.4 Procedural deduction in PLANNER 154
8.5 PROLOG and MBase 156
8.5.1 PROLOG's search rules 156
8.5.2 Explicit search control in MBase 157
Bibliographical notes 162
Study suggestions 162

9 Representing Uncertainty 166

9.1 Sources of uncertainty 166
9.2 Expert systems and probability theory 168
9.2.1 Conditional probability 168
9.2.2 Certainty factors 170
9.2.3 Certainty factors versus conditional probabilities 172
9.3 Vagueness and possibility 175
9.3.1 Fuzzy sets 175
9.3.2 Fuzzy logic 177
9.3.3 Possibility theory 178
9.4 The uncertain state of uncertainty 179
Bibliographical notes 180
Study suggestions 181
10 Knowledge Acquisition

10.1 Theoretical analyses of knowledge acquisition
10.1.1 Stages of knowledge acquisition
10.1.2 Different levels in the analysis of knowledge
10.1.3 Ontological analysis
10.2 Expert system shells
10.2.1 EMYCIN as architecture and abstraction
10.2.2 Maintaining and debugging knowledge bases in TEIRESIAS
10.3 Knowledge acquisition methods
10.3.1 Knowledge elicitation by interview in COMPASS
10.3.2 Automating knowledge elicitation in OPAL
10.3.3 A graphical interface to a domain model
10.3.4 Efficacy of OPAL and related efforts
10.4 Knowledge-based knowledge acquisition

Bibliographical notes
Study suggestions

11 Heuristic Classification (I)

11.1 Classifications of expert system tasks
11.2 Classification problem solving
11.2.1 Heuristic matching
11.2.2 The generality of heuristic classification
11.3 Classification versus construction

Bibliographical notes
Study suggestions

12 Heuristic Classification (II)

12.1 Mapping tools to tasks
12.2 Heuristic classification in MUD and MORE
12.2.1 A model of the drilling fluid domain
12.2.2 Knowledge acquisition strategies
12.2.3 Confidence factors in MORE
12.2.4 Evaluating MORE
12.3 Making strategy more explicit
12.3.1 Lessons of the GUIDON project
12.3.2 NEOMYCIN's task structure

Bibliographical notes
Study suggestions

13 Hierarchical Hypothesize and Test

13.1 Managing complexity
13.2 Structured objects in CENTAUR
13.2.1 The structure of prototypes
13.2.2 Rules embedded in prototypes
13.3 Model-based reasoning in INTERNIST
13.3.1 Representing knowledge in a disease tree 248
13.3.2 Focusing attention in INTERNIST 251
13.3.3 Practical and theoretical problems with INTERNIST 252
13.4 TDE as knowledge engineering workbench 253
Bibliographical notes 255
Study suggestions 256

14 Constructive Problem Solving (I) 259
14.1 Motivation and overview 259
14.2 A case study: R1/XCON 260
14.2.1 Components and constraints 261
14.2.2 Using contexts to impose task structure 263
14.2.3 Reasoning with constraints: the Match method 265
14.3 Elicitation, evaluation and extensibility 267
14.3.1 Knowledge elicitation in R1/XCON 268
14.3.2 The evaluation and extension of R1/XCON 270
Bibliographical notes 272
Study suggestions 272

15 Constructive Problem Solving (II) 275
15.1 Construction strategies 275
15.2 An architecture for planning and meta-planning 277
15.3 Eliciting, representing and applying design knowledge 284
15.3.1 Knowledge-based backtracking in VT 284
15.3.2 Acquiring propose and revise knowledge in SALT 286
15.4 Summary of constructive problem solving 288
Bibliographical notes 290
Study suggestions 290

16 Designing for Explanation 294
16.1 Rule-based explanation 294
16.1.1 MYCIN's explanation system 295
16.1.2 Explanation in MYCIN derivatives: EMYCIN and NEOMYCIN 297
16.2 Frame-based explanation 299
16.2.1 Explanation in CENTAUR 299
16.2.2 Multimedia interfaces for explanation 306
16.3 Explanation and automatic programming 308
16.3.1 Automatic programming in XPLAIN 308
16.3.2 The Explainable Expert Systems project 309
16.3.3 Text plans and user models in PEA 312
16.4 Explanation facilities and future research 314
Bibliographical notes 315
Study suggestions 315

17 Tools for Building Expert Systems 320
17.1 Overview of expert systems tools 320
CONTENTS

17.2 Expert system shells 322
17.2.1 Matching shells to tasks 322
17.2.2 Shells and inflexibility 323
17.3 High-level programming languages 324
17.3.1 Constraints of production rule languages 324
17.3.2 Evaluating object-oriented approaches 325
17.3.3 Logic programming for expert systems 326
17.3.4 Multiple-paradigm programming environments 328
17.3.5 Additional modules 330
17.4 Potential implementation problems 333
17.4.1 Common pitfalls and how to avoid them 333
17.4.2 Selecting a software tool 334
17.4.3 How easy is it to use these tools? 336
17.4.4 What is good programming style? 338
17.5 More maxims on expert system development 339
Bibliographical notes 341
Study suggestions 341

18 Blackboard Architectures 344
18.1 The blackboard metaphor 344
18.2 HEARSAY, AGE and OPM 346
18.2.1 Motivation for HEARSAY-II architecture 346
18.2.2 HEARSAY's use of knowledge sources 347
18.2.3 HEARSAY-III: an abstract architecture 348
18.2.4 Abstraction in AGE and OPM 349
18.3 The blackboard environment BB* 350
18.3.1 Architecture, framework and application 351
18.3.2 BB1 and ACCORD as architecture and framework 351
18.3.3 PROTEAN: application as framework instantiation 352
18.3.4 Integrating different reasoning strategies 354
18.3.5 Summarizing BB* 355
18.4 Efficiency and flexibility in blackboard frameworks: GBB and Erasmus 356
18.4.1 Blackboard retrieval in GBB 356
18.4.2 Blackboard configuration in Erasmus 357
18.5 Concurrency and parallelism in CAGE and POLYGON 358
Bibliographical notes 360
Study suggestions 360

19 Truth Maintenance Systems 362
19.1 Keeping track of dependencies 362
19.1.1 Relaxation in networks 363
19.1.2 Belief revision 364
19.2 Revising propositional theories 366
19.3 Nonmonotonic justifications 367
19.4 Maintaining multiple contexts 371
19.4.1 Assumption-based maintenance 371
19.4.2	Model-based diagnosis using ATMS	374
19.5	Summary and comparison of TMSs	377
	Bibliographical notes	378
	Study suggestions	378

20	Machine Learning	380
	Overview of inductive learning	381
	Early work: Meta-DENDRAL	383
	Rule generation and refinement	384
	Version spaces	386
	The candidate elimination algorithm	387
	Matching instances to patterns in Meta-DENDRAL	388
	Building decision trees and production rules	390
	The structure of decision trees	390
	The ID3 algorithm	392
	Changes and additions to ID3 in C4.5	395
	Tuning rule sets	397
	Bibliographical notes	399
	Study suggestions	400

21	Belief Networks	402
	Dempster–Shafer theory	402
	Belief functions	403
	Applying Dempster–Shafer theory to MYCIN	404
	Pearl's theory of evidential reasoning in a hierarchy	406
	Comparing methods of inexact reasoning	408
	Summarizing the state of uncertainty	410
	Bibliographical notes	411
	Study suggestions	411

22	Case-Based Reasoning	413
	The case base	414
	The CHEF program	415
	Retrieval and adaptation methods	416
	Computer-aided instruction: the CATO system	418
	The domain of caselaw	418
	Legal research and legal reasoning	419
	CATO as an intelligent teaching system	420
	Case-based report generation in FRANK	422
	Components of FRANK	423
	FRANK's blackboard system	424
	The CBR module of FRANK	424
	Comparing case-based and rule-based systems	425
	Bibliographical notes	427
	Study suggestions	427
Contents

23 Hybrid Systems
- 23.1 Learning methods in ODYSSEUS
 - 23.1.1 EBG as abstraction
 - 23.1.2 Case-based learning
- 23.2 The ODYSSEUS and MINERVA systems
 - 23.2.1 The MINERVA expert system shell
 - 23.2.2 Learning in ODYSSEUS
- 23.3 Using cases to handle exceptions
- 23.4 Hybrid systems and connectionist approaches
 - 23.4.1 Why connectionism?
 - 23.4.2 SCALIR: a hybrid system for legal information retrieval
- 23.5 Learning in SCALIR
- 23.6 The future of hybrid systems
Bibliographical notes
Study suggestions

24 Summary and Conclusion
- 24.1 The riddle of artificial intelligence
- 24.2 Knowledge representation revisited
- 24.3 AI programming languages
- 24.4 Practical problem solving
- 24.5 Expert system architectures
- 24.6 Expert systems research
- 24.7 Conclusion
Bibliographical notes
Study suggestions

Appendix CLIPS Programming
- A1 A short history of CLIPS
- A2 Rules and functions in CLIPS
- A2.1 Facts
- A2.2 Rules
- A2.3 Watching and dribbling
- A2.4 Using templates
- A2.5 Defining functions
- A3 Object-orientation in CLIPS
- A4 The ‘Knights and Knaves’ example
 - A4.1 Understanding the problem
 - A4.2 Ontological analysis and knowledge representation
 - A4.3 Writing the rules
 - A4.4 Extending the rules: logical compounds
 - A4.5 Backtracking and multiple contexts
 - A4.6 Handling reported speech
 - A4.7 Complete program listing
Trademark notice
The following names are trademarks or registered trademarks of the organizations given after each in brackets: ART, ART-IM, CBR Express (Inference Corporation); Eiffel (Nonprofit International Consortium for Eiffel); Flavors (Symbolics Inc.); KEE (Intellicorp Inc.); Knowledge Craft (Carnegie Group, Inc.); KRL, LOOPS, SmallTalk (Xerox Corporation); Macintosh (Apple Computer, Inc.); Neurosheet 2 (Neuron Data); PROLOG (Expert Systems International); UNIX (Licensed through X/Open Company Ltd); VAX-11/780 (Digital Equipment Corporation); Visual Basic, Visual C++, Windows (Microsoft Corporation); XCON (Carnegie-Mellon University/Digital Equipment Corporation).