Contents

1. **Goal** ... 1
 1.1 Why a New Computer Concept? 1
 1.2 What is Synergetics About?
 Pattern Recognition as Pattern Formation 3
 1.3 Cognitive Processes and Synergetic Computers 4

Part I **Synergetic Computers**

2. What Are Patterns? .. 9

3. Associative Memory .. 18

4. Synergetics – An Outline ... 20
 4.1 Some Typical Examples ... 20
 4.2 Reminder of the Basic Concepts and Mathematical Tools
 of Synergetics .. 23

5. The Standard Model of Synergetics for Pattern Recognition 36
 5.1 Prototype Pattern Vectors and Test Pattern Vectors 36
 5.2 Construction of the Dynamics 39
 5.3 Important Properties of $V(ξ_k)$ 43
 5.3.1 Summary of the Results 43
 5.3.2 Where Are the Deepest Minima of V? 43
 5.3.3 Where Are the Stationary and Stable Points of V? 45
 5.3.4 How Are Stable Fixed Points
 and Saddle Points Reached? 49

6. Examples: Recognition of Faces and of City Maps 51

7. Possible Realizations by Networks 56

8. Simultaneous Invariance with Respect to Translation,
 Rotation and Scaling .. 60
 8.1 An Approach Based on Fourier Transforms
 and Logarithmic Maps 60
 8.2 Numerical Calculations 65
8.3 A Second Approach to the Invariance Problem 68
8.4 General Transformations of Patterns 74
8.5 Invariance of Order Parameter Equations 80

9. Recognition of Complex Scenes. Scene-Selective Attention 85

10. Learning Algorithms .. 88
10.1 Survey; Several Lines of Approach 88
10.2 Learning of the Synaptic Strengths 88
 10.2.1 An Iterative Procedure for Determining the Adjoint Vectors v^+_k ... 88
 10.2.2 A Special Case ... 92
 10.2.3 Implementation in a Three-Layer (Two-Layer) Network 93
10.3 Information and Information Gain 96
10.4 The Basic Construction Principle of a Synergetic Computer Revisited ... 100
10.5 Learning by Means of the Information Gain 103
10.6 A Learning Algorithm Based on a Gradient Dynamics 110
 10.6.1 Construction of the Lyapunov Function 111
 10.6.2 Projection onto the q_j-Space 113
10.7 Summary .. 123

11. Learning of Processes and Associative Action 125
11.1 Derivation of the Fokker-Planck Equation 125
11.2 Derivation of the Itô-Langevin Equation 130
11.3 Taking Care of a Reduced Information 132

Part II Cognition and Synergetic Computers

12. Comparisons Between Human Perception and Machine "Perception" .. 137
 12.1 Introductory Remarks .. 137
 12.2 Rotational Invariance. Adaption and Assimilation. Gestalt. Decomposition of Scenes 139
 12.2.1 Rotational Invariance ... 139
 12.2.2 Adaption and Assimilation. Gestalt 140
 12.2.3 Decomposition of Scenes 140
 12.3 Recognition of Low- and High-Pass Filtered Faces 142
 12.4 Stereopsis .. 152

13. Oscillations in the Perception of Ambiguous Patterns 163
 13.1 Introduction ... 163
 13.2 Properties of Ambivalent Patterns 166
 13.3 Perception of Ambivalent Patterns Without Bias 168
 13.4 Oscillations in Perception in the Presence of a Bias 170
13.5 Ambiguous Patterns with More Than Two Alternatives 174
13.6 Hysteresis .. 177
13.7 The Role of Fluctuations of Attention Parameters 179
 13.7.1 The Model .. 181
 13.7.2 Results ... 181
 13.7.3 Discussion ... 184

14. Dynamic Pattern Recognition of Coordinated Biological Motion ... 185
 14.1 Introduction. Perception of Structure in Biological Motion 185
 14.2 The Pattern Generation and Pattern Recognition Experiments . 186
 14.3 The Behavioral Pattern Recognition Algorithm 188
 14.4 Application and Results 190
 14.5 Recognition of Patterns of Movement Characterized only by Specific Light Spots 192
 14.6 Recognition of Movement Patterns in a Plane Other than that Perpendicular to the Observer 195

Part III Logical Operations and Outlook

15. Realization of the Logical Operation XOR by a Synergetic Computer .. 205
 15.1 Introduction .. 205
 15.2 Solution of the XOR Problem 205
 15.3 Comparison with Fluid Instabilities 207
 15.4 Learning ... 208

16. Towards the Neural Level ... 209
 16.1 Neurons Fire and May Mode-Lock 209
 16.2 Summary of the Main Results 210
 16.3 Oscillator Model of a Neuron: Rotating Wave Approximation and Slowly Varying Amplitude Approximation 211
 16.4 A Network of Oscillators for Associative Memory 212
 16.5 Frequency Locking of Two Oscillators 220
 16.6 Frequency Locking of Several Oscillators 223
 16.7 Phase Oscillators ... 224
 16.8 Pulse-Coupled Neural Network for Pattern Recognition 225

17. Concluding Remarks and Outlook 231
 17.1 Pattern Recognition Is Pattern Formation 231
 17.2 Attractor States and Beyond 232
 17.3 Some Problems Left for the Future 233

Bibliography and Comments ... 235

Subject Index ... 243