CONTENTS

1 INTRODUCTION

1.1 Multibody Systems, 1
1.2 Reference Frames, 4
1.3 Kinematics, 8
1.4 Dynamic Equations, 27
1.5 Mechanics of Deformable Bodies, 29
1.6 Objectives and Scope of This Book, 30
References, 33

2 REFERENCE KINEMATICS

2.1 Rotation Matrix, 35
2.2 Properties of the Rotation Matrix, 47
2.3 Successive Rotations, 53
2.4 Time Derivative of the Rotation Matrix, 61
2.5 Acceleration Analysis, 79
2.6 The Rodrigues Parameters, 84
2.7 Euler Angles, 89
2.8 The Direction Cosines, 95
2.9 The 4×4 Transformation Matrix, 99
2.10 Concluding Remarks, 110
References, 112
Problems, 113
3 ANALYTICAL TECHNIQUES

3.1 Generalized Coordinates and Kinematic Constraints, 118
3.2 Degrees of Freedom and Generalized Coordinate Partitioning, 129
3.3 Virtual Work and Generalized Forces, 140
3.4 Lagrange's Equation, 157
3.5 Calculus of Variations, 175
3.6 Euler's Equation in Case of Several Variables, 182
3.7 Equations of Motion of Rigid Body Systems, 193
3.8 Planar Motion of Rigid Bodies, 203
3.9 Newton–Euler Equations, 207
3.10 Concluding Remarks, 211
 References, 214
 Problems, 215

4 MECHANICS OF DEFORMABLE BODIES

4.1 Theory of Elasticity, 221
4.2 Kinematics of Deformable Bodies, 222
4.3 Strain Components, 227
4.4 Physical Interpretation of Strains, 231
4.5 Stress Components, 233
4.6 Equations of Equilibrium and Symmetry of the Stress Tensor, 237
4.7 Constitutive Equations, 240
4.8 Virtual Work of the Elastic Forces, 247
4.9 Concluding Remarks, 249
 References, 250
 Problems, 251

5 CLASSICAL APPROXIMATION METHODS

5.1 Assumed Displacement Field, 254
5.2 Generalized Coordinates of Deformable Bodies, 257
5.3 Velocity and Acceleration of a Point on a Deformable Body, 263
5.4 Kinetic Energy of Deformable Bodies, 269
5.5 Generalized Forces, 285
5.6 Kinematic Constraints, 293
5.7 System Equations of Motion, 296
5.8 Application to a Multibody System, 300
5.9 Approximation Methods and Partial Differential Equations of Equilibrium, 313
5.10 Viscoelastic Analysis, 316
5.11 Lumped Masses, 318
5.12 Generalized Newton–Euler Equations, 321