

Contents

Preface xi

Prologue xiii

1 Matter Waves 1

1.1 An Experiment 1
1.2 A Second Experiment 5
1.3 Locality 7
1.4 Beyond the Electron 8

Neutrons 8
Atoms 9

Bose-Einstein Condensates 9
The Experiment 12

1.5 Quantum Theory of Two-Slit Interference 13
1.6 Critique of the Quantum-Mechanical Account 18

2 Photons 23

2.1 Do Photons Exist? 24

Detection and the Quantum of Light 24
Photoelectric Effect 24
Anticoincidences 28

The Hanbury-Brown and Twiss Experiment 30

Photons at Last 34
Remarks 36

2.2 Wave–Particle Duality for Single Photons 37

The Mystery of Wave–Particle Duality 38
Delayed Choice 39

Comments 43
3 The Uncertainty Principle 45

3.1 The Pfleegor–Mandel Experiment 45
Two Lasers, One Photon 45
The Heisenberg Uncertainty Principle 47
Uncertainty in the Pfleegor–Mandel Experiment 50

3.2 Reflections on the Uncertainty Principle 52
Quantum Uncertainty versus Classical Ignorance 52
Interpretation of the Uncertainty Principle 53
The Uncertainty Principle and Causality 53
The Uncertainty Principle and Descriptions of Natural Phenomena 55

3.3 Some Consequences of the Uncertainty Principle 56
Atoms 57
Nuclei 58
Trajectories 58

3.4 The Energy–Time Uncertainty Relation 59
Average Properties of Systems 59
Lifetimes and Line Widths 61
Time and Frequency Standards 62
More on Causality: The Uncertainty Principle and an Ambiguity in Time 63
Origin of the Energy–Time Uncertainty Relation 67
Comment 71

3.5 Squeezed Light and the Detection of Gravitational Radiation 72
Gravitational Radiation 72
Squeezed States of the Simple Harmonic Oscillator 73
Squeezed States of Light 79

3.6 Quantum Non-Demolition Measurements 83
Back Action and the Detection of Gravitational Radiation 83
Seeing a Single Photon Without Destroying It 86

4 Complementarity 91

4.1 Bohr's Discovery of Complementarity 92
Como, 1927 94

4.2 Einstein's Attack on Complementarity 95
The Solvay Meetings: Complementarity between Which-Path Information and Interference 96
Complementarity in the Energy-Time Uncertainty Relation 99

4.3 The New Paradigm: Information 102
Quantum Beats 102
Theory of Quantum Beats: Complementarity 105
Contents

Comments 180

6.7 Comments on Quantum Nonlocality 183

7 **Schrödinger's Cat** 185

7.1 What Is the Cat Paradox? 186
7.2 Superpositions and Mixtures: A More Technical Statement of the Cat Paradox 187
7.3 Further Discussion of the Difference Between Superpositions and Mixtures: Spin 188
7.4 Why Is Quantum Behavior Not Observed in the Large-Scale World? 189

Interference 190
Uncertainty Principle 190
Quantum Tunneling 190

7.5 Decoherence 193
7.6 Watching Decoherence 199
7.7 Laboratory Realizations of Macroscopic Quantum Behavior 202

Conditions for the Existence of Macroscopic Quantum Behavior 203
Macroscopic Quantum Tunneling: SQUIDS 205
Macroscopic Quantum Coherence 207
A Microscopic Analog 209

8 **Measurement** 215

8.1 The Measurement Problem 215

The Collapse of the Wave Function 215
Is the Collapse of the Wave Function Described by the Schrödinger Equation? 219

Quantum Theory of Measurement: The Infinite Regress 222
Termination of the Infinite Regress: The Projection Postulate 224

8.2 The Active Nature of Measurement in Quantum Mechanics 227

Mixtures and Superpositions 227
What Is the State of the Photon a Decaying Atom Emits? 229

The Quantum Zeno Effect 231

8.3 Attempts to Solve the Measurement Problem 237

Small Detectors and Big Detectors: Decoherence 237
Does Decoherence Solve the Measurement Problem? 239
Decoherence Can Be Undone 239
9 Quantum Information and Computation 245
 9.1 Bits and Qubits 246
 9.2 Quantum Cryptography 247
 Quantum Key Distribution Via Single-Particle Superposition 248
 9.3 Quantum Teleportation 252
 9.4 Quantum Computation: The Deutsch–Jozsa Algorithm 259
 An Analogy 260
 The Deutsch–Jozsa Problem 262
 Logical Operations on Quantum Registers 262
 The Deutsch–Jozsa Algorithm 264
 Logical Operations and U_f 267
 A Toy Quantum Computer 268
 A Real Quantum Computer 271
 9.5 Comments on Quantum Machines 277

Epilogue 279

Appendix: A Bibliography of Experiments for the Undergraduate Laboratory 281
 Chapter 1: Matter Waves 281
 Chapter 2: Photons 282
 Chapter 3: The Uncertainty Principle 282
 Chapter 4: Complementarity 283
 Chapter 6: Testing Bell’s Inequalities: Entangled States 283
 Chapter 8: Measurement 284

References 285

Index 293