Contents

CHAPTER 1
Introduction

1.1 What and How? .. 2
1.2 Physical Origins and Rate Equations .. 3
 1.2.1 Conduction .. 3
 1.2.2 Convection ... 6
 1.2.3 Radiation ... 9
 1.2.4 Relationship to Thermodynamics 12
1.3 The Conservation of Energy Requirement 13
 1.3.1 Conservation of Energy for a Control Volume 13
 1.3.2 The Surface Energy Balance 25
 1.3.3 Application of the Conservation Laws: Methodology 28
1.4 Analysis of Heat Transfer Problems: Methodology 29

Symbols xxiii
1.5 Relevance of Heat Transfer 32
1.6 Units and Dimensions 35
1.7 Summary 38
 References 41
 Problems 41

CHAPTER 2
Introduction to Conduction

2.1 The Conduction Rate Equation 58
2.2 The Thermal Properties of Matter 60
 2.2.1 Thermal Conductivity 60
 2.2.2 Other Relevant Properties 67
2.3 The Heat Diffusion Equation 70
2.4 Boundary and Initial Conditions 77
2.5 Summary 81
 References 82
 Problems 82

CHAPTER 3
One-Dimensional, Steady-State Conduction

3.1 The Plane Wall 96
 3.1.1 Temperature Distribution 96
 3.1.2 Thermal Resistance 98
 3.1.3 The Composite Wall 99
 3.1.4 Contact Resistance 101
3.2 An Alternative Conduction Analysis 112
3.3 Radial Systems 116
 3.3.1 The Cylinder 116
 3.3.2 The Sphere 122
3.4 Summary of One-Dimensional Conduction Results 125
3.5 Conduction with Thermal Energy Generation 126
 3.5.1 The Plane Wall 127
 3.5.2 Radial Systems 132
 3.5.3 Application of Resistance Concepts 137
3.6 Heat Transfer from Extended Surfaces 137
 3.6.1 A General Conduction Analysis 139
 3.6.2 Fins of Uniform Cross-Sectional Area 141
 3.6.3 Fin Performance 147
 3.6.4 Fins of Nonuniform Cross-Sectional Area 150
 3.6.5 Overall Surface Efficiency 153
3.7 The Bioheat Equation 162
3.8 Summary 166
 References 168
 Problems 169
Contents

CHAPTER 4

Two-Dimensional, Steady-State Conduction

4.1 Alternative Approaches 202
4.2 The Method of Separation of Variables 203
4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 207
4.4 Finite-Difference Equations 212
 4.4.1 The Nodal Network 213
 4.4.2 Finite-Difference Form of the Heat Equation 214
 4.4.3 The Energy Balance Method 215
4.5 Solving the Finite-Difference Equations 222
 4.5.1 The Matrix Inversion Method 222
 4.5.2 Gauss-Seidel Iteration 223
 4.5.3 Some Precautions 229
4.6 Summary 234
References 235
Problems 235

4S.1 The Graphical Method

 4S.1.1 Methodology of Constructing a Flux Plot W-1
 4S.1.2 Determination of the Heat Transfer Rate W-2
 4S.1.3 The Conduction Shape Factor W-3
References W-6
Problems W-6

CHAPTER 5

Transient Conduction

5.1 The Lumped Capacitance Method 256
5.2 Validity of the Lumped Capacitance Method 259
5.3 General Lumped Capacitance Analysis 263
5.4 Spatial Effects 270
5.5 The Plane Wall with Convection 272
 5.5.1 Exact Solution 272
 5.5.2 Approximate Solution 273
 5.5.3 Total Energy Transfer 274
 5.5.4 Additional Considerations 275
5.6 Radial Systems with Convection 276
 5.6.1 Exact Solutions 276
 5.6.2 Approximate Solutions 277
 5.6.3 Total Energy Transfer 277
 5.6.4 Additional Considerations 278
5.7 The Semi-Infinite Solid 283
5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 290
 5.8.1 Constant Temperature Boundary Conditions 290
 5.8.2 Constant Heat Flux Boundary Conditions 292
 5.8.3 Approximate Solutions 293
5.9 Periodic Heating 299
CHAPTER 6
Introduction to Convection 347

6.1 The Convection Boundary Layers 348
 6.1.1 The Velocity Boundary Layer 348
 6.1.2 The Thermal Boundary Layer 349
 6.1.3 The Concentration Boundary Layer 350
 6.1.4 Significance of the Boundary Layers 352

6.2 Local and Average Convection Coefficients 352
 6.2.1 Heat Transfer 352
 6.2.2 Mass Transfer 353
 6.2.3 The Problem of Convection 355

6.3 Laminar and Turbulent Flow 359
 6.3.1 Laminar and Turbulent Velocity Boundary Layers 359
 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 361

6.4 The Boundary Layer Equations 364
 6.4.1 Boundary Layer Equations for Laminar Flow 365

6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 367
 6.5.1 Boundary Layer Similarity Parameters 368
 6.5.2 Functional Form of the Solutions 368

6.6 Physical Significance of the Dimensionless Parameters 374

6.7 Boundary Layer Analogies 377
 6.7.1 The Heat and Mass Transfer Analogy 377
 6.7.2 Evaporative Cooling 381
 6.7.3 The Reynolds Analogy 384

6.8 The Convection Coefficients 385

6.9 Summary 385
 References 386
 Problems 387

6S.1 Derivation of the Convection Transfer Equations W-21
 6S.1.1 Conservation of Mass W-21
 6S.1.2 Newton's Second Law of Motion W-22
 6S.1.3 Conservation of Energy W-26
 6S.1.4 Conservation of Species W-28
 References W-33
 Problems W-33
8.8 Microscale Internal Flow 524
 8.8.1 Flow Conditions in Microscale Internal Flow 524
 8.8.2 Thermal Considerations in Microscale Internal Flow 525
8.9 Convection Mass Transfer 528
8.10 Summary 531
 References 533
 Problems 534

CHAPTER 9
Free Convection 559

9.1 Physical Considerations 560
9.2 The Governing Equations 563
9.3 Similarity Considerations 564
9.4 Laminar Free Convection on a Vertical Surface 566
9.5 The Effects of Turbulence 568
9.6 Empirical Correlations: External Free Convection Flows 571
 9.6.1 The Vertical Plate 571
 9.6.2 Inclined and Horizontal Plates 574
 9.6.3 The Long Horizontal Cylinder 579
 9.6.4 Spheres 583
9.7 Free Convection within Parallel Plate Channels 584
 9.7.1 Vertical Channels 585
 9.7.2 Inclined Channels 587
9.8 Empirical Correlations: Enclosures 587
 9.8.1 Rectangular Cavities 587
 9.8.2 Concentric Cylinders 590
 9.8.3 Concentric Spheres 591
9.9 Combined Free and Forced Convection 593
9.10 Convection Mass Transfer 594
9.11 Summary 595
 References 596
 Problems 597

CHAPTER 10
Boiling and Condensation 619

10.1 Dimensionless Parameters in Boiling and Condensation 620
10.2 Boiling Modes 621
10.3 Pool Boiling 622
 10.3.1 The Boiling Curve 622
 10.3.2 Modes of Pool Boiling 624
10.4 Pool Boiling Correlations 627
 10.4.1 Nucleate Pool Boiling 627
 10.4.2 Critical Heat Flux for Nucleate Pool Boiling 629
 10.4.3 Minimum Heat Flux 629
 10.4.4 Film Pool Boiling 630
 10.4.5 Parametric Effects on Pool Boiling 631
Contents

10.5 Forced Convection Boiling 636
 10.5.1 External Forced Convection Boiling 637
 10.5.2 Two-Phase Flow 637
 10.5.3 Two-Phase Flow in Microchannels 640
10.6 Condensation: Physical Mechanisms 641
10.7 Laminar Film Condensation on a Vertical Plate 643
10.8 Turbulent Film Condensation 646
10.9 Film Condensation on Radial Systems 651
10.10 Film Condensation in Horizontal Tubes 654
10.11 Dropwise Condensation 655
10.12 Summary 655
 References 656
 Problems 657

Chapter 11
Heat Exchangers

11.1 Heat Exchanger Types 670
11.2 The Overall Heat Transfer Coefficient 673
11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 675
 11.3.1 The Parallel-Flow Heat Exchanger 676
 11.3.2 The Counterflow Heat Exchanger 679
 11.3.3 Special Operating Conditions 679
11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method 686
 11.4.1 Definitions 686
 11.4.2 Effectiveness–NTU Relations 688
11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness–NTU Method 694
11.6 Compact Heat Exchangers 700
11.7 Summary 705
 References 706
 Problems 707

11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers W-37
 References W-41
 Problems W-41

Chapter 12
Radiation: Processes and Properties

12.1 Fundamental Concepts 724
12.2 Radiation Intensity 727
 12.2.1 Mathematical Definitions 727
 12.2.2 Radiation Intensity and Its Relation to Emission 728
 12.2.3 Relation to Irradiation 733
 12.2.4 Relation to Radiosity 735
12.3 Blackbody Radiation 736
 12.3.1 The Planck Distribution 737
 12.3.2 Wien’s Displacement Law 737
Contents

12.3.3 The Stefan-Boltzmann Law 738
12.3.4 Band Emission 739

12.4 Emission from Real Surfaces 744

12.5 Absorption, Reflection, and Transmission by Real Surfaces 752

12.5.1 Absorptivity 754
12.5.2 Reflectivity 755
12.5.3 Transmissivity 756
12.5.4 Special Considerations 757

12.6 Kirchhoff's Law 762
12.7 The Gray Surface 764
12.8 Environmental Radiation 770
12.9 Summary 776

References 780
Problems 780

CHAPTER 13

Radiation Exchange Between Surfaces 811

13.1 The View Factor 812

13.1.1 The View Factor Integral 812
13.1.2 View Factor Relations 813

13.2 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 822

13.2.1 Net Radiation Exchange at a Surface 823
13.2.2 Radiation Exchange Between Surfaces 824
13.2.3 Blackbody Radiation Exchange 830
13.2.4 The Two-Surface Enclosure 831
13.2.5 Radiation Shields 832
13.2.6 The Reradiating Surface 835

13.3 Multimode Heat Transfer 839
13.4 Radiation Exchange with Participating Media 842

13.4.1 Volumetric Absorption 843
13.4.2 Gaseous Emission and Absorption 843

13.5 Summary 847

References 849
Problems 849

CHAPTER 14

Diffusion Mass Transfer 879

14.1 Physical Origins and Rate Equations 880

14.1.1 Physical Origins 880
14.1.2 Mixture Composition 881
14.1.3 Fick's Law of Diffusion 882
14.1.4 Mass Diffusivity 883

14.2 Mass Transfer in Nonstationary Media 885

14.2.1 Absolute and Diffusive Species Fluxes 885
14.2.2 Evaporation in a Column 888

14.3 The Stationary Medium Approximation 893
14.4 Conservation of Species for a Stationary Medium
14.4.1 Conservation of Species for a Control Volume 894
14.4.2 The Mass Diffusion Equation 894
14.4.3 Stationary Media with Specified Surface Concentrations 897
14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 900
14.5.1 Evaporation and Sublimation 901
14.5.2 Solubility of Gases in Liquids and Solids 902
14.5.3 Catalytic Surface Reactions 905
14.6 Mass Diffusion with Homogeneous Chemical Reactions 908
14.7 Transient Diffusion 911
14.8 Summary 916
References 917
Problems 917

APPENDIX A
Thermophysical Properties of Matter 927

APPENDIX B
Mathematical Relations and Functions 959

APPENDIX C
Thermal Conditions Associated with Uniform Energy
Generation in One-Dimensional, Steady-State Systems 965

APPENDIX D
The Convection Transfer Equations 973
D.1 Conservation of Mass 974
D.2 Newton’s Second Law of Motion 974
D.3 Conservation of Energy 975
D.4 Conservation of Species 976

APPENDIX E
Boundary Layer Equations for Turbulent Flow 977

APPENDIX F
An Integral Laminar Boundary Layer Solution
for Parallel Flow over a Flat Plate 981

Index 985