CONTENTS

1 Introduction 1

1.1 The subject 1

1.1.1 The porous medium equation 1

1.1.2 The PME as a nonlinear parabolic equation 2

1.2 Peculiar features of the PME 4

1.2.1 Finite propagation and free boundaries 4

1.2.2 The role of special solutions 6

1.3 Nonlinear diffusion. Related equations 7

1.4 Contents 9

1.4.1 The main problems and the classes of solutions 9

1.4.2 Chapter overview 10

1.4.3 What is not covered 12

1.5 Reading the book 13

Notes 14

PART ONE

2 Main applications 19

2.1 Gas flow through a porous medium 19

2.1.1 Extensions 21

2.2 Nonlinear heat transfer 21

2.3 Groundwater flow. Boussinesq’s equation 23

2.4 Population dynamics 25

2.5 Other applications and equations 26

2.6 Images, concepts and names taken from the applications 26

Notes 27

Problems 28

3 Preliminaries and basic estimates 30

3.1 Quasilinear equations and the PME 30

3.1.1 Existence of classical solutions 30

3.1.2 Weak theories and the PME 31

3.2 The GPME with good Φ. Main estimates 33

3.2.1 Maximum principle and comparison 34

3.2.2 Other boundedness estimates 35

3.2.3 The stability estimate. L^1 contraction 36
3.2.4 The energy identity 38
3.2.5 Estimate of a time derivative 40
3.2.6 The BV estimates 42
3.3 Properties of the PME 43
3.3.1 Elementary invariance 43
3.3.2 Scaling 44
3.3.3 Conservation and dissipation 45
3.4 Alternative formulations of the PME and associated equations 46
3.4.1 Formulations 46
3.4.2 Dual equation 47
3.4.3 The p-Laplacian equation in $d = 1$ 48

Notes 49
Problems 49

4 Basic examples 52
4.1 Some very simple solutions 52
4.2 Separation of variables 53
4.2.1 Positive λ. Nonlinear eigenvalue problem 53
4.2.2 Negative $\lambda = -l < 0$. Blow-up 54
4.3 Planar travelling waves 55
4.3.1 Limit solutions 57
4.3.2 Finite propagation and Darcy’s law 58
4.4 Source-type solutions. Self-similarity 59
4.4.1 Comparison of ZKB profiles with Gaussian profiles. 60
4.4.2 Self-similarity. Derivation of the ZKB solution 62
4.4.3 Extension to $m < 1$ 65
4.5 Blow-up. Limits for the existence theory 66
4.5.1 Optimal existence versus blow-up 67
4.5.2 Non-contractivity in uniform norm 67
4.6 Two solutions in groundwater infiltration 68
4.6.1 The Polubarinova-Kochina solution 68
4.6.2 The dipole solution 69
4.6.3 Signed self-similar solutions 71
4.7 General planar front solutions 72
4.7.1 Solutions with a blow-up interface 73

Notes 75
Problems 77

5 The Dirichlet problem I. Weak solutions 81
5.1 Introducing generalized solutions 81
5.2 Weak solutions for the complete GPME 84
5.2.1 Concepts of weak and very weak solution 85
5.2.2 Definition of weak solutions for the HDP 86
5.2.3 About the initial data 87
5.2.4 Examples of weak solutions for the PME 89
5.3 Uniqueness of weak solutions 90
5.3.1 Non-existence of classical solutions 91
5.3.2 The subclass of energy solutions 92
5.4 Existence of weak energy solutions for general Φ. Case of non-negative data 92
5.4.1 Improvement of the assumption on f 96
5.4.2 Non-positive solutions 96
5.5 Existence of weak signed solutions 97
5.5.1 Constant boundary data 101
5.6 Some properties of weak solutions 101
5.7 Weak solutions with non-zero boundary data 103
5.7.1 Properties of radial solutions 107
5.8 Universal bound in sup norm 108
5.9 Construction of the Friendly Giant 111
5.10 Properties of fast diffusion 114
5.10.1 Extinction in finite time 114
5.10.2 Singular fast diffusion 116
5.11 Equations of inhomogeneous media. A short review 116
Notes 119
Problems 122

6 The Dirichlet problem II. Limit solutions, very weak solutions and some other variants 126
6.1 L^1 theory. Stability. Limit solutions 127
6.1.1 Stability of weak solutions 127
6.1.2 Limit solutions in the L^1 setting 128
6.2 Theory of very weak solutions 130
6.2.1 Uniqueness of very weak solutions 132
6.2.2 Traces of very weak solutions 135
6.3 Problems in different domains 137
6.4 Limit solutions build a semigroup 138
6.5 Weak solutions with bounded forcing 140
6.5.1 Relating the concepts of solution 142
6.6 More general initial data. The case L^1_0 143
6.7 More general initial data. The case H^{-1} 145
6.7.1 Review of functional analysis 145
6.7.2 Basic identities 146
6.7.3 General setting. Existence of H^{-1} solutions 147
Notes 148
Problems 149
9.6.3 Solutions with compactly supported data 210
9.6.4 Solutions with finite moments 211
9.6.5 Centre of mass and mean deviation 215
9.7 The Cauchy-Dirichlet problem in unbounded domains 216
9.8 The Cauchy problem for the GPME 217
9.8.1 Weak theory 217
9.8.2 Limit L^1 theory 220
9.8.3 Relating the Cauchy-Dirichlet and Cauchy problems 221
Notes 221
Problems 222

10 The PME as an abstract evolution equation.
Semigroup approach 229
10.1 Maximal monotone operators and semigroups 230
10.1.1 Generalities on maximal monotone operators 230
10.1.2 Evolution problem associated to an m.m.o. Semigroup 233
10.1.3 Complete evolution equation 234
10.1.4 Application to the GPME 235
10.2 Discretizations, mild solutions and accretive operators 236
10.2.1 The ITD method 237
10.2.2 Problem of convergence. Mild solutions 238
10.2.3 Accretive operators 240
10.2.4 The Crandall–Liggett theorem 242
10.3 Mild solutions of the filtration equation 244
10.3.1 Problems in bounded domains 245
10.3.2 Problem in the whole space 246
10.3.3 Cauchy problem with a peculiar nonlinearity 248
10.4 Time discretization and mass transfer problems 250
10.5 Other concepts of solution 252
Notes 254
Problems 255

11 The Neumann problem and problems on manifolds 257
11.1 Problem and weak solutions 257
11.1.1 Concept of weak solution 258
11.1.2 Examples of solutions of the HNP 260
11.2 Existence and uniqueness for the HNP 260
11.2.1 Uniqueness and energy solutions 260
11.2.2 Existence and properties for good data 261
11.2.3 Existence for L^1 data 262
11.2.4 Neumann problem and abstract ODE theory 262
11.2.5 Convergence to the Cauchy problem 263
11.3 Results for the HNP with a power equation 263
11.4 Other boundary value problems 266
11.4.1 Exterior problems 266
11.4.2 Mixed problems 267
11.4.3 Nonlinear boundary conditions 267
11.4.4 Dynamic boundary conditions 268
11.4.5 Boundary conditions of combustion type 268
11.5 The porous medium flow on a Riemannian manifold 268
11.5.1 Initial value problem 269
11.5.2 Initial value problem for the PME 271
11.5.3 Homogeneous Dirichlet, Neumann and other problem 272
Notes 273
Problems 273

PART TWO

12 The Cauchy problem with growing initial data 279
12.1 The Cauchy problem with large initial data 280
12.2 The Aronson–Caffarelli estimate 281
12.2.1 Precise a priori control on the initial data 283
12.3 Existence under optimal growth conditions 284
12.3.1 Functional preliminaries 284
12.3.2 Growth estimates for good solutions 284
12.3.3 Estimates in the spaces $L^1(p_a)$ 289
12.3.4 Existence results 290
12.4 Uniqueness of growing solutions 293
12.5 Further properties of the solutions 297
12.6 Special solutions 299
12.6.1 Bounded solutions 299
12.6.2 Periodic solutions 300
12.6.3 Problems in a half space 300
12.6.4 Problems in intervals 301
12.7 Boundedness of local solutions 301
12.8 The PME in cones and tubes. Higher growth rates 302
12.8.1 Solutions in conical domains 302
12.8.2 Solutions in tubes 303
Notes 305
Problems 306

13 Optimal existence theory for non-negative solutions 309
13.1 Measures as initial data. Initial trace 310
13.2 Existence of initial traces in the CP 312
13.3 Pierre’s uniqueness theorem 315
13.4 Uniqueness without growth restrictions 321
13.5 Dirichlet problem with optimal data 325
13.5.1 The special solution 326
13.5.2 The double trace results 326
13.6 Weak implies continuous 328
13.7 Complements 328
13.7.1 Signed solutions 328
Notes 330
Problems 331

14 Propagation properties 332
14.1 Basic definitions. The free boundary 333
14.2 Evolution properties of the positivity set 334
14.2.1 Persistence 334
14.2.2 Expansion and penetration of the support 335
14.2.3 Finite propagation 337
14.3 Initial behaviour. Waiting times 340
14.3.1 Waiting times for general solutions of the Cauchy problem 342
14.3.2 Addendum for comparison. Positivity for the heat equation 343
14.3.3 Examples of infinite waiting time near a corner 344
14.4 Hölder continuity and vertical lines 345
14.5 Describing the free boundary by the time function 347
14.6 Properties of solutions in the whole space 348
14.6.1 Finite propagation for L^1 data 348
14.6.2 Monotonicity properties for solutions with compact support 349
14.6.3 Free boundary behaviour 351
14.7 Propagation of signed solutions 352
Notes 353
Problems 354

15 One-dimensional theory. Regularity and interfaces 357
15.1 Cauchy problem. Regularity of the pressure 358
15.2 New comparison theorems 363
15.2.1 Shifting comparison 363
15.2.2 Counting intersections and lap number 365
15.3 The interface 368
15.3.1 Generalities 368
15.3.2 Left-hand interface and inner interfaces 371
15.3.3 Waiting time 372
15.4 Equation of the interface and Lipschitz continuity 376
15.4.1 Semiconvexity 378
17 Techniques of symmetrization and concentration

17.1 Functional preliminaries
- 17.1.1 Rearrangement
- 17.1.2 Schwarz symmetrization
- 17.1.3 Mass concentration

17.2 Concentration theory for elliptic equations
- 17.2.1 Solutions are less concentrated than their data
- 17.2.2 Integral super- and subsolutions
- 17.2.3 Comparison of solutions

17.3 Symmetrization and comparison. Elliptic case
- 17.3.1 Standard symmetrization result revisited
- 17.3.2 General symmetrization-concentration comparison
- 17.3.3 Problem in the whole space

17.4 Comparison theorems for the evolution

17.5 Smoothing effect and decay for the PME with L^1 functions or measures as data
- 17.5.1 The calculation of the best constant
- 17.5.2 Cases $m \leq 1$

17.6 Smoothing exponents and scaling properties

17.7 Smoothing effect and time decay from L^p

Notes

Problems

18 Asymptotic behaviour I. The Cauchy problem

18.1 ZKB asymptotics for the PME

18.2 Proof of convergence for non-negative solutions
- 18.2.1 Completing the general case

18.3 Convergence of supports and interfaces

18.4 Continuous scaling version. Fokker–Planck equation

18.5 A Lyapunov method

18.6 The entropy approach. Convergence rates
- 18.6.1 Rates of convergence

18.7 Asymptotic behaviour in one space dimension
- 18.7.1 Adjusting the centre of mass. Improved convergence
- 18.7.2 Closer analysis of the velocity. N-waves
- 18.7.3 The quest for optimal rates

18.8 Asymptotic behaviour for signed solutions
- 18.8.1 Actual rates for $M = 0$
- 18.8.2 Asymptotics for the PME with forcing
- 18.8.3 Asymptotic expansions
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.9</td>
<td>18.9.1</td>
<td>Stabilization with convergence in relative pointwise error</td>
<td>489</td>
</tr>
<tr>
<td>18.9.2</td>
<td></td>
<td>Solutions of the FDE that remain two-signed</td>
<td>489</td>
</tr>
<tr>
<td>18.10</td>
<td>18.10.1</td>
<td>Asymptotics of non-integrable solutions</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>18.10.2</td>
<td>Asymptotics of filtration equations</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>18.10.3</td>
<td>Asymptotics of superslow diffusion</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>18.10.4</td>
<td>Asymptotics of the PME in inhomogeneous media</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>18.10.5</td>
<td>Asymptotics for systems</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>18.10.6</td>
<td>Other</td>
<td>494</td>
</tr>
</tbody>
</table>

Notes 494
Problems 495

19 Regularity and finer asymptotics in several dimensions 498

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Lipschitz and C^1 regularity for large times</td>
<td>499</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Lipschitz continuity for the pressure</td>
<td>499</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Lipschitz continuity of the free boundary</td>
<td>502</td>
</tr>
<tr>
<td>19.1.3</td>
<td>$C^{1,\alpha}$ regularity</td>
<td>505</td>
</tr>
<tr>
<td>19.2</td>
<td>Focusing solutions and limited regularity</td>
<td>505</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Propagation and hole filling. Unbounded speed</td>
<td>508</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Asymptotic convergence</td>
<td>509</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Continuation after the singularity</td>
<td>510</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Multiple holes</td>
<td>510</td>
</tr>
<tr>
<td>19.3</td>
<td>Lipschitz continuity from space to time</td>
<td>510</td>
</tr>
<tr>
<td>19.4</td>
<td>C^∞ regularity</td>
<td>513</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Eliminating the admissibility condition</td>
<td>514</td>
</tr>
<tr>
<td>19.5</td>
<td>Further regularity results</td>
<td>514</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Conservation of initial regularity</td>
<td>515</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Concavity results</td>
<td>515</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Eventual concavity</td>
<td>515</td>
</tr>
<tr>
<td>19.6</td>
<td>Various</td>
<td>516</td>
</tr>
<tr>
<td>19.6.1</td>
<td>Precise Hölder regularity</td>
<td>516</td>
</tr>
<tr>
<td>19.6.2</td>
<td>Fast diffusion flows</td>
<td>518</td>
</tr>
</tbody>
</table>

Notes 518
Problems 519

20 Asymptotic behaviour II. Dirichlet and Neumann problems 521

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Large-time behaviour of the HDP. Non-negative solutions</td>
<td>521</td>
</tr>
<tr>
<td>20.1.1</td>
<td>Rate of convergence</td>
<td>526</td>
</tr>
<tr>
<td>20.1.2</td>
<td>Linear versus nonlinear</td>
<td>527</td>
</tr>
<tr>
<td>20.1.3</td>
<td>On general initial data</td>
<td>529</td>
</tr>
</tbody>
</table>
Contents

20.2 Asymptotic behaviour for signed solutions 529
 20.2.1 Description of the \(\omega \)-limit in \(d = 1 \) 533
20.3 Asymptotics of the PME in a tubular domain 535
 20.3.1 Basic asymptotic result 536
 20.3.2 Lateral propagation. Logarithmic speed 537
20.4 Other Dirichlet problems 540
20.5 Asymptotics of the Neumann problem 543
 20.5.1 Case of zero mass 544
 20.5.2 Case of non-zero mass 544
20.6 Asymptotics on compact manifolds 546
Notes 546
Problems 547

COMPLEMENTS

21 Further applications 551
 21.1 Thin liquid film spreading under gravity 551
 21.1.1 Higher order models for thin films 552
 21.1.2 Related application 553
 21.2 The equations of unsaturated filtration 553
 21.3 Immiscible fluids. Oil equations 554
 21.4 Boundary layer theory 555
 21.5 Spread of magma in volcanos 556
 21.6 Signed solutions in groundwater flow 557
 21.7 Limits of kinetic and radiation models 557
 21.7.1 Carleman’s model 557
 21.7.2 Rosseland model 558
 21.7.3 Marshak waves 559
 21.8 The PME as the limit of particle models 559
 21.9 Diffusive coagulation-fragmentation models 560
 21.10 Diffusion in semiconductors 561
 21.11 Contrast enhancement in image processing 561
 21.12 Stochastic models. PME with noise 563
 21.13 General filtration equations 563
 21.14 Other 564

A Basic facts 565
 A.1 Notations and basic facts 565
 A.1.1 Points and sets 565
 A.1.2 Functions 566
 A.1.3 Integrals and derivatives 567
 A.1.4 Functional spaces 567
A.1.5 Some integrals and constants 568
A.1.6 Various 569
A.2 Nonlinear operators 569
A.3 Maximal monotone graphs 570
A.3.1 Comparison of maximal monotone graphs 571
A.4 Measures 572
A.5 Marcinkiewicz spaces 573
A.6 Some ideas of potential theory 574
A.7 A lemma from measure theory 574
A.8 Results for semiharmonic functions 575
A.9 Three notes on the Giant and elliptic problems 577
A.9.1 Nonlinear elliptic approach. Calculus of variations 578
A.9.2 Another dynamical proof of existence 579
A.9.3 Another construction of the Giant 580
A.10 Optimality of the asymptotic convergence for the PME 581
A.11 Non-contractivity of the PME flow in L^p spaces 583
A.11.1 Other contractivity properties 586

Bibliography 588

Index 621