CONTENTS

<table>
<thead>
<tr>
<th>PREFACE</th>
<th>xlii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 BASICS OF MECHANISMS

- Introduction
- Physical Principles
- Inclined Plane
- Pulley Systems
- Screw-Type Jack
- Levers and Mechanisms
- Linkages
- Specialized Mechanisms
- Gears and Gearing
- Pulleys and Belts
- Sprockets and Chains
- Cam Mechanisms

CHAPTER 2 MOTION CONTROL SYSTEMS

- Motion Control Systems Overview
- Glossary of Motion Control Terms
- Mechanical Components for Specialized Motion-Control Systems
- Servomotors, Stepper Motors, and Actuators for Motion Control
- Servosystem Feedback Sensors
- Solenoids and Their Applications

CHAPTER 3 INDUSTRIAL ROBOTS

- Introduction to Robots
- Industrial Robots
- Mechanism for Planar Manipulation with Simplified Kinematics
- Tool-Changing Mechanism for Robot
- Piezoelectric Motor in Robot Finger Joint
- Self-Reconfigurable, Two-Arm Manipulator with Bracing
- Improved Roller and Gear Drives for Robots and Vehicles
- Glossary of Robotic Terms

CHAPTER 4 MOBILE SCIENTIFIC, MILITARY, AND RESEARCH ROBOTS

- Introduction to Mobile Robots
- Scientific Mobile Robots
- Military Mobile Robots
- Research Mobile Robots
- Second-Generation Six-Limbed Experimental Robot
- All-Terrain Vehicle with Self-Righting and Pose Control

CHAPTER 5 LINKAGES: DRIVES AND MECHANISMS

- Four-Bar Linkages and Typical Industrial Applications
- Seven Linkages for Transport Mechanisms
- Five Linkages for Straight-Line Motion
- Six Expanding and Contracting Linkages
Four Linkages for Different Motions
Nine linkages for Accelerating and Decelerating linear Motions
Twelve Linkages for Multiplying Short Motions
Four Parallel-Link Mechanisms
Seven Stroke Multiplier Linkages
Nine Force and Stroke Multiplier Linkages
Eighteen Variations of Differential Linkage
Four-Bar Space Mechanisms
Seven Three-Dimensional Linkage Drives
Thirteen Different Toggle Linkage Applications
Hinged Links and Torsion Bushings Soft-Start Drives
Eight Linkages for Band Clutches and Brakes
Design of Crank-and-Rocker Links for Optimum Force Transmission
Design of Four-Bar Linkages for Angular Motion
Multi-Bar Linkages for Curvilinear Motions
Roberts’ Law Helps to Design Alternate Four-Bar Linkages
Slider-Crank Mechanism

CHAPTER 6 GEARS: DEVICES, DRIVES, AND MECHANISMS

Gears and Eccentric Disk Provide Quick Indexing
Odd-Shaped Planetary Gears Smooth Stop and Go
Cycloid Gear Mechanism Controls Pump Stroke
Gears Convert Rotary-to-Linear Motion
Twin-Motor Planetary Gears Offer Safety and Dual-Speed
Eleven Cycloid Gear Mechanisms
Five Cardan-Gear Mechanisms
Controlled Differential Gear Drives
Flexible Face-Gears are Efficient High-Ratio Speed Reducers
Rotary Sequencer Gears Turn Coaxially
Planetary Gear Systems
Noncircular Gears are Balanced for Speed
Sheet-Metal Gears, Sprockets, Worms, and Ratchets for Light Loads
Thirteen Ways Gears and Clutches Can Change Speed Ratios
Gear and Clutch Shifting Mechanisms
Twinworm Gear Drive Offers Bidirectional Output
Elastomeric Gear Bearings Equalize Torque Loads
Redundant Gearing in Helicopter Transmits Torque
Worm Gear Friction Reduced by Oil Pressure
Bevel and Hypoid Gear Design Prevents Undercutting
Geared Electromechanical Rotary Joint
Geared Speed Reducers Offer One-Way Output
Design of Geared Five-Bar Mechanisms
Equations for Designing Geared Cycloid Mechanisms
Design Curves and Equations for Gear-Slider Mechanisms

CHAPTER 7 CAM, GENEVA, AND RATCHET DRIVES AND MECHANISMS

Cam-Controlled Planetary Gear System
Five Cam-Stroke-Amplifying Mechanisms
Cam-Curve-Generating Mechanisms
Fifteen Different Cam Mechanisms
Ten Special-Function Cams
Twenty Geneva Drives
Six Modified Geneva Drives
CHAPTER 8 CLUTCHES AND BRAKES

Twelve Clutches with External or Internal Control
Spring-Wrapped Clutch Slips at Preset Torque
Controlled-Slip Expands Spring Clutch Applications
Spring Bands Improve Overrunning Clutch
Slip and Bidirectional Clutches Combine to Control Torque
Walking Pressure Plate Delivers Constant Torque
Seven Overrunning Clutches
One-Way Clutch has Spring-Loaded Pins and Sprags
Roller Clutch provides Two Output Speeds
Seven Overriding Clutches
Ten Applications for Overrunning Clutches
Eight Sprag Clutch Applications
Six Small Clutches Perform Precise Tasks
Twelve Different Station Clutches
Twelve Applications for Electromagnetic Clutches and Brakes
Roller Locking Mechanism Contains Two Overrunning Clutches

CHAPTER 9 LATCHING, FASTENING, AND CLAMPING DEVICES AND MECHANISMS

Sixteen Latch, Toggle, and Trigger Devices
Fourteen Snap-Action Devices
Remote Controlled Latch
Toggle Fastener Inserts, Locks, and Releases Easily
Grapple Frees Loads Automatically
Quick-Release Lock Pin has a Ball Detent
Automatic Brake Locks Hoist when Driving Torque Ceases
Lift-Tong Mechanism Firmly Grips Objects
Perpendicular-Force Latch
Two Quick-Release Mechanisms
Ring Springs Clamp Platform Elevator into Position
Cammed Jaws in Hydraulic Cylinder Grip Sheet Metal
Quick-Acting Clamps for Machines and Fixtures
Nine Friction Clamping Devices
Detents for Stopping Mechanical Movements
Twelve Clamping Methods for Aligning Adjustable Parts
Spring-Loaded Chucks and Holding Fixtures

CHAPTER 10 CHAIN AND BELT DEVICES AND MECHANISMS

Twelve Variable-Speed Belt and Chain Drives
Belts and Chains are Available in Many Different Forms
Change Center Distance without Altering Speed Ratio
Motor Mount Pivots to Control Belt Tension
Ten Roller Chains and their Adaptations
Twelve Applications for Roller Chain
Six Mechanisms for Reducing Pulsations in Chain Drives
CHAPTER 11 SPRING AND SCREW DEVICES AND MECHANISMS 269

Flat Springs in Mechanisms 270
Twelve Ways to Use Metal Springs 272
Seven Overriding Spring Mechanisms for Low-Torque Drives 274
Six Spring Motors and Associated Mechanisms 276
Twelve Air Spring Applications 278
Novel Applications for Different Springs 280
Applications for Belleville Springs 281
Vibration Control with Spring Linkage 282
Twenty Screw Devices 283
Ten Applications for Screw Mechanisms 285
Seven Special Screw Arrangements 287
Fourteen Spring and Screw adjusting Devices 288

CHAPTER 12 SHAFT COUPLINGS AND CONNECTIONS 289

Four Couplings for Parallel Shafts 290
Links and Disks Couple Offset Shafts 291
Disk-and-Link Couplings Simplify Torque Transmission 292
Interlocking Space-Frames Flex as they Transmit Shaft Torque 293
Coupling with Off-Center PIns Connects Misaligned Shafts 295
Universal Joint Transmits Torque 45° At Constant Speed 296
Ten Universal Shaft Couplings 297
Nineteen Methods for Coupling Rotating Shafts 299
Five Different Pin-and-Link Couplings 303
Ten Different Splined Connections 304
Fourteen Ways to Fasten Hubs to Shafts 306

CHAPTER 13 MOTION-SPECIFIC DEVICES, MECHANISMS, AND MACHINES 309

Timing Belts, Four-Bar linkage Team Up for Smooth Indexing 310
Ten Indexing and Intermittent Mechanisms 312
Twenty-Seven Rotary-to-Reciprocating Motion and Dwell Mechanisms 314
Five Friction Mechanisms for Intermittent Rotary Motion 320
Nine Different Ball Slides for Linear Motion 322
Ball-Bearing Screws Convert Rotary to Linear Motion 324
Nineteen Arrangements for Changing Linear Motion 325
Five Adjustable-Output Mechanisms 329
Four Different Reversing Mechanisms 331
Ten Mechanical Computing Mechanisms 332
Seven Different Mechanical Power Amplifiers 336
Forty-Three Variable-Speed Drives
and Transmissions 339
Ten Variable-Speed Friction Drives 351
Four Drives Convert Oscillating Motion to One-Way Rotation 353
Operating Principles of Liquid, Semisolid, and Vacuum Pumps 355
Twelve Different Rotary-Pump Actions 359

CHAPTER 14 PACKAGING, CONVEYING, HANDLING, AND SAFETY MECHANISMS AND MACHINES 361

Fifteen Devices that Sort, Feed, or Weigh 362
Seven Cutting Mechanisms 366
Two Flipping Mechanisms 368
One Vibrating Mechanism 368
Seven Basic Parts Selectors 369
Eleven Parts-Handling Mechanisms 370
Seven Automatic-Feed Mechanisms 372
<table>
<thead>
<tr>
<th>CHAPTER 15</th>
<th>TORQUE, SPEED, TENSION, AND LIMIT CONTROL SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of the Differential Winch to Control Systems</td>
<td>399</td>
</tr>
<tr>
<td>Six Ways to Prevent Reverse Rotation</td>
<td>400</td>
</tr>
<tr>
<td>Caliper Brakes Keep Paper Tension in Web Presses</td>
<td>402</td>
</tr>
<tr>
<td>Control System for Paper Cutting</td>
<td>403</td>
</tr>
<tr>
<td>Warning System Prevents Overloading of Boom</td>
<td>403</td>
</tr>
<tr>
<td>Lever System Monitors Cable Tension</td>
<td>404</td>
</tr>
<tr>
<td>Eight Torque-Limiters Protect Light-Duty Drives</td>
<td>404</td>
</tr>
<tr>
<td>Thirteen Limiters Prevent Overloading</td>
<td>405</td>
</tr>
<tr>
<td>Seven Ways to Limit Shaft Rotation</td>
<td>406</td>
</tr>
<tr>
<td>Mechanical Systems for Controlling Tension and Speed</td>
<td>409</td>
</tr>
<tr>
<td>Nine Drives for Controlling Tension</td>
<td>409</td>
</tr>
<tr>
<td>Limit Switches in Machinery</td>
<td>415</td>
</tr>
<tr>
<td>Nine Automatic Speed Governors</td>
<td>418</td>
</tr>
<tr>
<td>Eight Speed Control Devices for Mechanisms</td>
<td>422</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 16</th>
<th>INSTRUMENTS AND CONTROLS: PNEUMATIC, HYDRAULIC, ELECTRIC, AND ELECTRONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twenty-Four Mechanisms Actuated by Pneumatic or Hydraulic Cylinders</td>
<td>425</td>
</tr>
<tr>
<td>Foot-Controlled Braking System</td>
<td>426</td>
</tr>
<tr>
<td>Fifteen Tasks for Pneumatic Power</td>
<td>428</td>
</tr>
<tr>
<td>Ten Applications for Metal Diaphragms and Capsules</td>
<td>428</td>
</tr>
<tr>
<td>Nine Differential Transformer Sensors</td>
<td>430</td>
</tr>
<tr>
<td>High-Speed Electronic Counters</td>
<td>432</td>
</tr>
<tr>
<td>Applications for Permanent Magnets</td>
<td>434</td>
</tr>
<tr>
<td>Nine Electrically Driven Hammers</td>
<td>435</td>
</tr>
<tr>
<td>Sixteen Thermostatic Instruments and Controls</td>
<td>438</td>
</tr>
<tr>
<td>Eight Temperature-Regulating Controls</td>
<td>440</td>
</tr>
<tr>
<td>Seven Photoelectric Controls</td>
<td>444</td>
</tr>
<tr>
<td>Liquid Level Indicators and Controllers</td>
<td>446</td>
</tr>
<tr>
<td>Applications for Explosive-Cartridge Devices</td>
<td>448</td>
</tr>
<tr>
<td>Centrifugal, Pneumatic, Hydraulic, and Electric Governors</td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 17</th>
<th>COMPUTER-AIDED DESIGN CONCEPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer-Aided Design</td>
<td>455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 18</th>
<th>RAPID PROTOTYPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Prototyping Focuses on Building Functional Parts</td>
<td>461</td>
</tr>
<tr>
<td>Rapid Prototype Processes</td>
<td>462</td>
</tr>
<tr>
<td>Rapid Prototyping Steps</td>
<td>462</td>
</tr>
<tr>
<td>Commercial Rapid Prototyping Choices</td>
<td>463</td>
</tr>
</tbody>
</table>
CHAPTER 19 NEW DIRECTIONS IN MECHANICAL ENGINEERING 473

The Role of Microtechnology in Mechanical Engineering 474
Micromachines Open a New Frontier for Machine Design 476
Multilevel Fabrication Permits more Complex and Functional MEMS 480
Gallery of MEMS Electron-Microscope Images 480
MEMS Chips Become Integrated Microcontrol Systems 484
Alternative Materials for Building MEMS 486
LIGA: An Alternative Method for Making Microminiature Parts 487
Miniature Multispeed Transmissions for Small Motors 488
The Role of Nanotechnology in Mechanical Engineering 489
What are Carbon Nanotubes? 491
Nanoactuators Based on Electrostatic Forces on Dielectrics 492

INDEX 495