Contents

Preface .. xvi

CHAPTER 1
Introduction 1
1.1 Aquifers, Ground Water and Oil Reservoirs 1
 1.1.1 Definitions 1
 1.1.2 The Moisture Distribution in a Vertical Profile .. 2
 1.1.3 Classification of Aquifers 4
 1.1.4 Properties of Aquifers 7
 1.1.5 The Oil Reservoir 8
1.2 The Porous Medium 13
1.3 The Continuum Approach to Porous Media 15
 1.3.1 The Molecular and Microscopic Levels 15
 1.3.2 Porosity and Representative Elementary Volume .. 19
 1.3.3 Areal and Linear Porosities 21
 1.3.4 Velocity and Specific Discharge 22
 1.3.5 Concluding Remarks 24

CHAPTER 2
Fluids and Porous Matrix Properties 27
2.1 Fluid Density 27
 2.1.1 Definitions 27
 2.1.2 Mixture of Fluids 30
 2.1.3 Measurement of Density 31
2.2 Fluid Viscosity 32
 2.2.1 Definition 32
 2.2.2 Non-Newtonian Fluids 33
 2.2.3 Units ... 34
 2.2.4 Effect of Pressure and Temperature 34
 2.2.5 Measurement of Viscosity 35
2.3 Fluid Compressibility 37
2.4 Statistical Description of Porous Media 38
 2.4.1 Particle-Size Distribution 39
 2.4.2 Pore-Size Distribution 41
 2.4.3 Other Statistical Descriptions 42
2.5 Porosity ... 43
 2.5.1 Porosity and Effective Porosity 43
 2.5.2 Porosity, Structure and Packing 45
 2.5.3 Porosity Measurement 47
2.6 Specific Surface .. 50
 2.6.1 Definitions .. 50
 2.6.2 Measurement of Specific Surface 51
2.7 Matrix and Medium Compressibility 52

CHAPTER 3
Pressure and Piezometric Head 59
 3.1 Stress at a Point 59
 3.2 Hydrostatic Pressure Distribution 62
 3.3 Piezometric Head 63

CHAPTER 4
The Fundamental Fluid Transport Equations in Porous Media ... 65
 4.1 Particles, Velocities and Fluxes in a Fluid Continuum ... 65
 4.1.1 Definitions of Particles and Velocities 65
 4.1.2 Diffusive Velocities and Fluxes 68
 4.1.3 The Eulerian and Lagrangian Points of View ... 70
 4.1.4 The Substantial Derivative 71
 4.2 The General Conservation Principle 74
 4.3 Equations of Mass, Momentum and Energy Conservation in a Fluid Continuum 77
 4.3.1 Mass Conservation of a Species 77
 4.3.2 Mass Conservation of a Fluid System 78
 4.3.3 Conservation of Linear Momentum of a Species \(\alpha \) 79
 4.3.4 Conservation of Linear Momentum of a Fluid System 80
 4.4 Constitutive Assumptions and Coupled Processes 82
 4.4.1 General Considerations 82
 4.4.2 Principles to be Used in Forming Constitutive Equations 84
 4.4.3 Coupled Processes 85
 4.5 A Porous Medium Model 90
 4.5.1 The Conceptual Model Approach 90
 4.5.2 A Model of Flow Through a Porous Medium 92
 4.5.3 Frames of Reference 93
 4.5.4 An Averaging Procedure 95
 4.6 Equations of Volume and Mass Conservation 98
 4.6.1 Equation of Volume Conservation 98
 4.6.2 Equation of Mass Conservation of a Species in Solution 100
 4.6.3 Equation of Mass Conservation 102
 4.7 Equation of Motion 104
CHAPTER 5
The Equation of Motion of a Homogeneous Fluid

5.1 The Experimental Law of Darcy
5.2 Generalization of Darcy's Law
 5.2.1 Isotropic Medium
 5.2.2 Anisotropic Medium
5.3 Deviations from Darcy's Law
 5.3.1 The Upper Limit
 5.3.2 The Lower Limit
 5.3.3 The Slip Phenomenon
5.4 Rotational and Irrotational Motion
 5.4.1 The Potential and Pseudopotential
 5.4.2 Irrotational Flow
5.5 Hydraulic Conductivity of Isotropic Media
 5.5.1 Hydraulic Conductivity and Permeability
 5.5.2 Units and Examples
5.6 Anisotropic Permeability
 5.6.1 The Principal Directions
 5.6.2 Directional Permeability
5.7 Measurement of Hydraulic Conductivity
 5.7.1 General
 5.7.2 The Constant Head Permeameter
 5.7.3 The Falling Head Permeameter
 5.7.4 Determining Anisotropic Hydraulic Conductivity
5.8 Layered Porous Media
 5.8.1 Flow Normal and Parallel to the Medium Layers
 5.8.2 Equivalent Hydraulic Conductivity of Arbitrarily Directed Flow
 5.8.3 A Layered Medium as an Equivalent Anisotropic Medium
 5.8.4 Girinskii's Potential
5.9 Compressible Fluids
5.10 Derivations of Darcy's Law
 5.10.1 Capillary Tube Models
 5.10.2 Fissure Models
 5.10.3 Hydraulic Radius Models
 5.10.4 Resistance to Flow Models
 5.10.5 Statistical Models
 5.10.6 Averaging the Navier-Stokes Equations
 5.10.7 Ferrandon's Model

4.8 Tortuosity and Permeability
 4.8.1 Relationship Between Tortuosity and Permeability
 4.8.2 Tortuosity and Other Transport Coefficients
 4.8.3 Formation Factor and Resistivity Index (Amyx 1960) in Reservoir Engineering
7.1.1 Boundary of Prescribed Potential .. 250
7.1.2 Boundary of Prescribed Flux .. 251
7.1.3 The Steady Free (or Phreatic) Surface without Accretion 252
7.1.4 The Unsteady Free (or Phreatic) Surface without Accretion 254
7.1.5 The Steady Free (or Phreatic) Surface with Accretion 256
7.1.6 The Unsteady Free (or Phreatic) Surface with Accretion 258
7.1.7 Boundary of Saturated Zone (or of Capillary Fringe) 259
7.1.8 The Seepage Face ... 260
7.1.9 Capillary Exposed Faces ... 262
7.1.10 Discontinuity in Permeability .. 263
7.1.11 A Note on Anisotropic Media .. 269
7.1.12 Boundary Conditions in Terms of Pressure or Density 270
7.2 A Well Posed Problem .. 270
7.3 Description of Boundaries in the Hodograph Plane 272
7.3.1 The Hodograph Plane .. 272
7.3.2 Boundaries in the Hodograph Plane 274
7.3.3 Examples of Hodograph Representation of Boundaries 280
7.3.4 Intersection of Boundaries of Different Types 284
7.4 The Relations between Solutions of Flow Problems in Isotropic and Anisotropic Media ... 289
7.4.1 The Flow Equations ... 290
7.4.2 Relationships among Parameters in the Two Systems 291
7.4.3 Examples ... 296
7.5 Superposition and Duhamel's Principles 297
7.5.1 Superposition ... 297
7.5.2 Unsteady Flow with Boundary Conditions Independent of Time 299
7.5.3 Unsteady Flow with Time-Dependent Boundary Conditions 300
7.6 Direct Integration in One-Dimensional Problems 301
7.6.1 Solution of the One-Dimensional Continuity Equation 301
7.6.2 Advance of a Wetting Front .. 303
7.7 The Method of Images ... 304
7.7.1 Principles ... 304
7.7.2 Examples ... 306
7.8 Methods Based on the Theory of Functions 312
7.8.1 Complex Variables and Analytic Functions 313
7.8.2 The Complex Potential and the Complex Specific Discharge 316
7.8.3 Sources and Sinks ... 316
7.8.4 Conformal Mapping ... 324
7.8.5 The Schwarz-Christoffel Transformation 333
7.8.6 Fictitious Flow in the ω-Plane 337
7.9 Numerical Methods .. 338
7.9.1 Method of Finite Differences ... 338
7.9.2 The Method of Finite Elements .. 346
7.9.3 Relaxation Methods .. 348
7.9.4 Schmidt's Graphic Method ... 350
7.10 Flow Nets by Graphic Methods 351

CHAPTER 8

Unconfined Flow and the Dupuit Approximation 361

8.1 The Dupuit Approximation ... 361
8.1.1 The Dupuit Assumptions ... 361
8.1.2 Examples of Application to Hydraulic Steady Flows in Homogeneous Media .. 366
8.1.3 Unconfined Flow in an Aquifer with Horizontal Stratification 369
8.1.4 Unconfined Flow in an Aquifer with Vertical Strata 372
8.1.5 Unconfined Flow in a Two-Dimensional Inhomogeneous Medium 373

8.2 Continuity Equations Based on the Dupuit Approximation 374
8.2.1 The Continuity Equation ... 374
8.2.2 Boundary and Initial Conditions 378
8.2.3 Some Solutions of Forchheimer's Equation 379
8.2.4 Some Solutions of Boussinesq's Equation 381

8.3 The Hodograph Method .. 388
8.3.1 The Functions ω and $\bar{\omega}$ 388
8.3.2 The Hodograph Method ... 389
8.3.3 Examples without a Seepage Face 391
8.3.4 Hamel's Mapping Function ... 398
8.3.5 Zhukovski's and Other Mapping Functions 403
8.3.6 A Graphic Solution of the Hodograph Plane 406

8.4 Linearization Techniques and Solutions 408
8.4.1 First Method of Linearization of the Boussinesq Equation 408
8.4.2 The Second Method of Linearization of the Boussinesq Equation 417
8.4.3 The Third Method of Linearization of the Boussinesq Equation 419
8.4.4 The Method of Successive Steady States 420
8.4.5 The Method of Small Perturbations 422
8.4.6 The Shallow Flow Approximation 430

CHAPTER 9

Flow of Immiscible Fluids .. 439

9.1 Introduction .. 439
9.1.1 Types of Two-Fluid Flows 439
9.1.2 The Abrupt Interface Approximation 439
9.1.3 Occurrence ... 440

9.2 Interfacial Tension and Capillary Pressure 441
9.2.1 Saturation and Fluid Content 441
9.2.2 Interfacial Tension and Wettability 441
9.2.3 Capillary Pressure .. 444
9.2.4 Drainage and Imbibition ... 449
9.2.5 Saturation Discontinuity at a Medium Discontinuity 452
9.2.6 Laboratory Measurement of Capillary Pressure 453
9.3 Simultaneous Flow of Two Immiscible Fluids 457
 9.3.1 The Basic Motion Equations 457
 9.3.2 Relative Permeability 459
 9.3.3 Mass Conservation in Multiphase Flow 466
 9.3.4 Statement of the Multiphase Flow Problem 466
 9.3.5 The Buckley-Leverett Equations 468
 9.3.6 Simultaneous Flow of a Liquid and a Gas 472
 9.3.7 Laboratory Determination of Relative Permeability 473
9.4 Unsaturated Flow 474
 9.4.1 Capillary Pressure and Retention Curve 475
 9.4.2 The Capillary Fringe 480
 9.4.3 Field Capacity and Specific Yield 483
 9.4.4 The Motion Equation 487
 9.4.5 Relative Permeability of Unsaturated Soils 491
 9.4.6 The Continuity Equation 495
 9.4.7 Methods of Solution and Examples 503
 9.4.8 Additional Comments on Infiltration and Redistribution of Moisture 513
 9.4.9 Comments on Vapor Movement in Unsaturated Flow 515
9.5 Immiscible Displacement with an Abrupt Interface 519
 9.5.1 The Abrupt Interface Approximation 519
 9.5.2 Piezometric Heads and Dynamic Equilibrium Conditions at a Stationary Interface 521
 9.5.3 The Boundary Conditions along an Interface 524
 9.5.4 Horizontal Interface Displacement 526
 9.5.5 Interface Displacement in the Vertical Plane 533
 9.5.6 Numerical and Graphic Methods 536
 9.5.7 Approximate Solutions based on Linearization 538
 9.5.8 Interface Stability 544
9.6 Determining the Steady Interface by the Hodograph Method 547
 9.6.1 Boundary Conditions 548
 9.6.2 Description of Boundaries in the Hodograph Plane 549
 9.6.3 Examples 549
9.7 The Interface in a Coastal Aquifer 557
 9.7.1 Occurrence 557
 9.7.2 The Ghyben-Herzberg Approximation 559
 9.7.3 Determining the Shape of a Stationary Interface by the Dupuit-Ghyben-Herzberg Approximation 561
 9.7.4 Approximate Solution for the Moving Interface 563
 9.7.5 Interface Upconing 569
 9.7.6 The Dupuit-Ghyben-Herzberg Approximation for an Unsteady Interface in a Thick Aquifer 573
CHAPTER 10

Hydrodynamic Dispersion ... 579
10.1 Definition of Hydrodynamic Dispersion 579
10.2 Occurrence of Dispersion Phenomena 582
10.3 Review of Some Hydrodynamic Dispersion Theories 582
 10.3.1 Capillary Tube and Cell Models 583
 10.3.2 Statistical Models 587
 10.3.3 Spatial Averaging 603
10.4 Parameters of Dispersion 605
 10.4.1 The Coefficients of Mechanical Dispersion and Hydrodynamic Dispersion 605
 10.4.2 The Medium's Dispersivity 611
 10.4.3 Dispersivity-Permeability Relationship 615
10.5 The Governing Equations and Boundary Conditions 617
 10.5.1 The Partial Differential Equation in Cartesian Coordinates 617
 10.5.2 The Partial Differential Equation in Curvilinear Coordinates 619
 10.5.3 Initial and Boundary Conditions 622
 10.5.4 Solving the Boundary Value Problems 624
 10.5.5 The Use of Nondimensional Variables 626
10.6 Some Solved Problems 626
 10.6.1 One-dimensional Flow 627
 10.6.2 Uniform Flow in a Plane 633
 10.6.3 Plane Radial Flow 634
10.7 Heat and Mass Transfer 641
 10.7.1 Modes of Heat Transfer in a Porous Medium 641
 10.7.2 Formulation of the Problem of Heat and Mass Transfer in a Fluid Continuum 643
 10.7.3 Formulation of the Problem of Heat and Mass Transfer in a Porous Medium 644
 10.7.4 Comments on Some Heat and Mass Transfer Coefficients 647
 10.7.5 Simplifying the Macroscopic Heat and Mass Transfer Equations 651
 10.7.6 Convective Currents and Instability 653
 10.7.7 Some Similitude Considerations 660

CHAPTER 11

Models and Analogs ... 665
11.1 General .. 665
11.2 Scaling Principles and Procedure 668
 11.2.1 The Two Systems 668
 11.2.2 Geometric Similarity 669
 11.2.3 Kinematic Similarity 670
 11.2.4 Dynamic Similarity 670
 11.2.5 Dimensional Analysis 671
11.2.6 Inspectional Analysis .. 673
11.2.7 Modified Inspectional Analysis 676
11.3 The Sand Box Model .. 678
 11.3.1 Description ... 678
 11.3.2 Scales .. 680
11.4 The Viscous Flow Analogs .. 687
 11.4.1 General .. 687
 11.4.2 Description of the Vertical Hele-Shaw Analog 687
 11.4.3 Establishing the Analogy between Analog and Prototype 690
 11.4.4 Scales for the Vertical Analog 693
 11.4.5 Recommended Applications of Vertical Analog 696
 11.4.6 The Liquids .. 697
 11.4.7 The Horizontal Hele-Shaw Analog—Description and Scales ... 697
 11.4.8 Simulation of an Infinite Horizontal Aquifer 701
11.5 Electric Analogs .. 702
 11.5.1 Description of the Electrolytic Tank and the Conducting Paper Analogs ... 702
 11.5.2 Scales for the Electrolytic Tank Analog 708
 11.5.3 The Resistance Network Analog for Steady Flow 710
 11.5.4 The Resistance-Capacitance Network for Unsteady Flow ... 716
 11.5.5 The Ion Motion Analog .. 719
11.6 The Membrane Analog ... 722
11.7 Summary .. 725
Answers to Exercises .. 729
Bibliography .. 733
Index ... 757