The Lattice Boltzmann Equation
for Fluid Dynamics and Beyond

Sauro Succi
Istituto Applicazioni Calcolo 'M. Picone'
Consiglio Nazionale delle Ricerche
Roma, Italy
Affiliated to The Physics Department, University of Rome

CLARENDON PRESS • OXFORD
2001
CONTENTS

I THEORY

1 Kinetic theory 3

1.1 Atomistic dynamics 3
1.2 Relaxation to local equilibrium 7
1.3 H-theorem 9
1.4 Length scales and transport phenomena 10
1.5 Chapman–Enskog procedure 11
1.6 The Navier–Stokes equations 13
1.7 Bhatnagar–Gross–Krook model equation 15
1.8 Exercises 15

2 Lattice Gas Cellular Automata 17

2.1 Fluids in Gridland: the Frisch–Hasslacher–Pomeau automaton 17
2.2 Fluons in action: LGCA microdynamic evolution 19
2.3 From LGCA to Navier–Stokes 27
2.3.1 Discrete local equilibria 28
2.4 Practical implementation 30
2.5 Lattice gas diseases and how to cure them 33
2.5.1 Statistical noise 34
2.5.2 Low Reynolds number 34
2.5.3 Exponential complexity 36
2.5.4 Spurious invariants 38
2.6 Summary 38
2.7 Exercises 38

3 Lattice Boltzmann models with underlying Boolean microdynamics 40

3.1 Nonlinear LBE 40
3.1.1 Lattice quantum fluids 43
3.2 The quasilinear LBE 44
3.3 The scattering matrix \(A_{ij} \) 46
3.4 Numerical experiments 49
3.5 Exercises 50

4 Lattice Boltzmann models without underlying Boolean microdynamics 51

4.1 LBE with enhanced collisions 51
4.2 Hydrodynamic and ghost fields 55
4.2.1 Field-theoretical analogies 58
4.2.2 Dimensional compactification 59
4.2.3 Removing ghost fields 60
4.3 The route to Navier-Stokes: adiabatic assumption 61
4.4 The mirage of zero viscosity 62
4.5 Numerical experiments 63
4.6 Exercises 64

5 Lattice Bhatnagar–Gross–Krook 65
5.1 Single-time relaxation 65
5.2 LBGK equilibria 66
5.3 LBGK versus LBE 68
5.4 Relation to continuum kinetic theory 70
5.5 Relation to discrete velocity models 72
5.6 LBE genealogy 72
5.7 Warm-up code 73
5.8 Exercises 73

II FLUID DYNAMICS APPLICATIONS AND ADVANCED THEORY

6 Boundary conditions 77
6.1 General formulation of LBE boundary conditions 77
6.2 Survey of various boundary conditions 78
 6.2.1 Periodic boundary conditions 79
 6.2.2 No-slip boundary conditions 82
 6.2.3 Free-slip boundary conditions 84
 6.2.4 Frictional slip 86
 6.2.5 Sliding walls 87
 6.2.6 The Inamuro method 88
 6.2.7 Moving walls 89
6.3 Open boundaries 90
6.4 Complex (misaligned) boundaries 91
 6.4.1 Staircased boundaries 92
 6.4.2 Extrapolation schemes 92
 6.4.3 The picky stuff 92
 6.4.4 The surfel method 93
6.5 Exactly incompressible LBE schemes 94
6.6 Exercises 96

7 Flows at moderate Reynolds number 97
7.1 Moderate Reynolds flows in simple geometry 97
7.2 LBE implementation 99
7.3 Boundary conditions 102
7.4 Flows past obstacles 103
7.5 More on the pressure field: Poisson-freedom 106
CONTENTS

7.6 Exercises 109

8 LBE flows in disordered media 110
8.1 Flows through porous media 110
8.2 LBE flows through porous media 112
8.3 Setting up the LBE simulation 114
8.4 Deposition algorithm 119
8.5 Numerical simulations 121
8.6 Synthetic matter and multiscale modeling 122
8.7 Exercises 123

9 Turbulent flows 124
9.1 Fluid turbulence 124
 9.1.1 Two-dimensional turbulence 126
 9.1.2 Turbulence and kinetic scales 126
9.2 LBE simulations of two-dimensional turbulence 127
 9.2.1 Seeing the invisible: sub-grid scales and numerical stability 131
9.3 Three-dimensional turbulence: parallel performance 134
9.4 Three-dimensional channel flow turbulence 136
9.5 Sub-grid scale modeling 137
 9.5.1 Two-equation models 139
 9.5.2 Non-local eddy viscosity models 140
 9.5.3 Wall—turbulence interactions 140
9.6 Summary 141
9.7 Exercises 141

10 Out of Legoland: geoflexible lattice Boltzmann equations 142
10.1 Coarse-graining LBE 142
10.2 Finite volume LBE 143
 10.2.1 Piecewise-constant streaming 144
 10.2.2 Piecewise-linear streaming 145
 10.2.3 Piecewise-linear collision operator 146
 10.2.4 Piecewise-parabolic interpolation 148
10.3 Finite difference LBE 149
10.4 Interpolation-supplemented LBE 149
10.5 Finite element LBE 150
10.6 Native LBE schemes on irregular grids 151
10.7 Implicit LBE schemes 151
10.8 Multiscale lattice Boltzmann scheme 152
10.9 Summary 153
10.10 Exercises 154

11 LBE in the framework of computational fluid dynamics 155
11.1 LBE and CFD 155
 11.1.1 Causality 156
 11.1.2 Accuracy 158
 11.1.3 Stability 159
 11.1.4 Consistency 162
 11.1.5 Efficiency 169
 11.1.6 Flexibility 170
11.2 Link to fully Lagrangian schemes 172
11.3 LBE in a nutshell 175
11.4 Exercises 176

III BEYOND FLUID DYNAMICS

12 LBE schemes for complex fluids 179
 12.1 LBE theory for generalized hydrodynamics 179
 12.2 LBE schemes for reactive flows 181
 12.2.1 Reactive LBE applications 183
 12.3 LBE schemes for multiphase flows 186
 12.3.1 Surface tension and interface dynamics 188
 12.3.2 Numerical methods for flows with interfaces 190
 12.3.3 Chromodynamic models 190
 12.3.4 The pseudo-potential approach 192
 12.3.5 The free energy approach 194
 12.3.6 Finite density models 197
 12.3.7 Miscellaneous multiphase LBE applications 199
 12.4 LBE schemes for flows with moving objects 201
 12.5 Colloidal flows 201
 12.5.1 The fluctuating LBE 202
 12.5.2 Solid–fluid moving boundaries 203
 12.5.3 Numerical tests 205
 12.5.4 Computational cost of the fluctuating LBE 208
 12.5.5 Thermal equilibrium 209
 12.6 Polymers in LBE flows 209
 12.7 Snow transport and deposition 211
 12.8 A new paradigm for non-equilibrium statistical mechanics? 212
 12.9 New vistas 213
 12.10 Exercises 213

13 LBE for quantum mechanics 214
 13.1 Quantum mechanics and fluids 214
 13.2 The fluid formulation of the Schrödinger equation 214
 13.2.1 Relativistic quantum mechanics: the Dirac equation 216
13.2.2 Dirac to Schrödinger: the adiabatic approximation 218
13.2.3 The interacting case 220
13.3 The quantum LBE 220
13.3.1 Extended operator splitting $3 = 1 + 1 + 1$ 221
13.3.2 Quantum LBE: move, turn and collide 222
13.3.3 Time marching 222
13.4 Numerical tests 224
13.4.1 Free particle motion 224
13.4.2 Harmonic oscillator 226
13.4.3 Scattering over a rectangular barrier 226
13.5 The quantum N-body problem 228
13.5.1 Quantum lattices for quantum computers 229
13.5.2 Bits, trits and q-bits 230
13.5.3 Quantum LBE and density functional theory 231
13.6 Exercises 232

14 Thermohydrodynamic LBE schemes 233
14.1 Isothermal and athermal lattices 233
14.2 Thermodynamic equilibria and multi-energy lattices 235
14.3 Extended parametric equilibria 236
14.4 Thermal LBE models without nonlinear deviations 240
14.5 Reduced thermohydrodynamic schemes 246
14.6 Attempts to rescue thermal LBE 248
14.6.1 Tolerance to realizability violations 248
14.6.2 The kinetic closure approach 248
14.6.3 Non space-filling lattices 249
14.6.4 Models with internal energy 249
14.7 The Digital Physics approach 251
14.8 Fake temperature schemes 252
14.9 Summary 252
14.10 Exercises 253

15 Finale: Who needs LBE? 254
15.1 Don'tUse class 254
15.2 CanUse class 254
15.3 ShouldUse class 255
15.4 MustUse class 255

16 Appendices 257
A Integer LBE 257
B The pseudospectral method 258
C A primer on parallel computing 259
C.1 Fraction of parallel content 260
C.2 Communicativity 260
CONTENTS

C.3 Load balancing 261

D From lattice units to physical units 261
D.1 Length 261
D.2 Time 262
D.3 Mass 262

References 263

Index 281