Digital Communications

Fifth Edition

John G. Proakis
Professor Emeritus, Northeastern University
Department of Electrical and Computer Engineering,
University of California, San Diego

Masoud Salehi
Department of Electrical and Computer Engineering,
Northeastern University
CONTENTS

Preface xvi

Chapter 1 Introduction

1.1 Elements of a Digital Communication System 1
1.2 Communication Channels and Their Characteristics 3
1.3 Mathematical Models for Communication Channels 10
1.4 A Historical Perspective in the Development of Digital Communications 12
1.5 Overview of the Book 15
1.6 Bibliographical Notes and References 15

Chapter 2 Deterministic and Random Signal Analysis

2.1 Bandpass and Lowpass Signal Representation 18
 2.1-1 Bandpass and Lowpass Signals / 2.1-2 Lowpass Equivalent of Bandpass Signals / 2.1-3 Energy Considerations / 2.1-4 Lowpass Equivalent of a Bandpass System
2.2 Signal Space Representation of Waveforms 28
 2.2-1 Vector Space Concepts / 2.2-2 Signal Space Concepts / 2.2-3 Orthogonal Expansions of Signals / 2.2-4 Gram-Schmidt Procedure
2.3 Some Useful Random Variables 40
2.4 Bounds on Tail Probabilities 56
2.5 Limit Theorems for Sums of Random Variables 63
2.6 Complex Random Variables 63
 2.6-1 Complex Random Vectors
2.7 Random Processes 66
 2.7-1 Wide-Sense Stationary Random Processes / 2.7-2 Cyclostationary Random Processes / 2.7-3 Proper and Circular Random Processes / 2.7-4 Markov Chains
2.8 Series Expansion of Random Processes 74
 2.8-1 Sampling Theorem for Band-Limited Random Processes / 2.8-2 The Karhunen-Loève Expansion
2.9 Bandpass and Lowpass Random Processes 78
Chapter 5 Carrier and Symbol Synchronization

5.1 Signal Parameter Estimation
5.1-1 The Likelihood Function / 5.1-2 Carrier Recovery and Symbol Synchronization in Signal Demodulation

5.2 Carrier Phase Estimation
5.2-1 Maximum-Likelihood Carrier Phase Estimation / 5.2-2 The Phase-Locked Loop / 5.2-3 Effect of Additive Noise on the Phase Estimate / 5.2-4 Decision-Directed Loops / 5.2-5 Non-Decision-Directed Loops

5.3 Symbol Timing Estimation
5.3-1 Maximum-Likelihood Timing Estimation / 5.3-2 Non-Decision-Directed Timing Estimation

5.4 Joint Estimation of Carrier Phase and Symbol Timing
5.5 Performance Characteristics of ML Estimators
5.6 Bibliographical Notes and References

Chapter 6 An Introduction to Information Theory

6.1 Mathematical Models for Information Sources
6.2 A Logarithmic Measure of Information 332
6.3 Lossless Coding of Information Sources 335
 6.3-1 The Lossless Source Coding Theorem / 6.3-2 Lossless Coding Algorithms
6.4 Lossy Data Compression 348
 6.4-1 Entropy and Mutual Information for Continuous Random Variables / 6.4-2 The Rate Distortion Function
6.5 Channel Models and Channel Capacity 354
 6.5-1 Channel Models / 6.5-2 Channel Capacity
6.6 Achieving Channel Capacity with Orthogonal Signals 367
6.7 The Channel Reliability Function 369
6.8 The Channel Cutoff Rate 371
 6.8-1 Bhattacharyya and Chernov Bounds / 6.8-2 Random Coding
6.9 Bibliographical Notes and References 380
Problems 381

Chapter 7 Linear Block Codes 400
7.1 Basic Definitions 401
 7.1-1 The Structure of Finite Fields / 7.1-2 Vector Spaces
7.2 General Properties of Linear Block Codes 411
 7.2-1 Generator and Parity Check Matrices / 7.2-2 Weight and Distance for Linear Block Codes / 7.2-3 The Weight Distribution Polynomial / 7.2-4 Error Probability of Linear Block Codes
7.3 Some Specific Linear Block Codes 420
 7.3-1 Repetition Codes / 7.3-2 Hamming Codes / 7.3-3 Maximum-Length Codes / 7.3-4 Reed-Muller Codes / 7.3-5 Hadamard Codes / 7.3-6 Golay Codes
7.4 Optimum Soft Decision Decoding of Linear Block Codes 424
7.5 Hard Decision Decoding of Linear Block Codes 428
 7.5-1 Error Detection and Error Correction Capability of Block Codes / 7.5-2 Block and Bit Error Probability for Hard Decision Decoding
7.6 Comparison of Performance between Hard Decision and Soft Decision Decoding 436
7.7 Bounds on Minimum Distance of Linear Block Codes 440
 7.7-1 Singleton Bound / 7.7-2 Hamming Bound / 7.7-3 Plotkin Bound / 7.7-4 Elias Bound / 7.7-5 McEliece-Rodemich-Rumsey-Welch (MRRW) Bound / 7.7-6 Varshamov-Gilbert Bound
7.8 Modified Linear Block Codes 445
 7.8-1 Shortening and Lengthening / 7.8-2 Puncturing and Extending / 7.8-3 Expurgation and Augmentation
7.9 Cyclic Codes
7.9-1 Cyclic Codes — Definition and Basic Properties / 7.9-2 Systematic Cyclic Codes / 7.9-3 Encoders for Cyclic Codes / 7.9-4 Decoding Cyclic Codes / 7.9-5 Examples of Cyclic Codes

7.10 Bose-Chaudhuri-Hocquenghem (BCH) Codes
7.10-1 The Structure of BCH Codes / 7.10-2 Decoding BCH Codes

7.11 Reed-Solomon Codes

7.12 Coding for Channels with Burst Errors

7.13 Combining Codes
7.13-1 Product Codes / 7.13-2 Concatenated Codes

7.14 Bibliographical Notes and References

Chapter 8 Trellis and Graph Based Codes

8.1 The Structure of Convolutional Codes

8.2 Decoding of Convolutional Codes
8.2-1 Maximum-Likelihood Decoding of Convolutional Codes — The Viterbi Algorithm / 8.2-2 Probability of Error for Maximum-Likelihood Decoding of Convolutional Codes

8.3 Distance Properties of Binary Convolutional Codes

8.4 Punctured Convolutional Codes
8.4-1 Rate-Compatible Punctured Convolutional Codes

8.5 Other Decoding Algorithms for Convolutional Codes

8.6 Practical Considerations in the Application of Convolutional Codes

8.7 Nonbinary Dual-k Codes and Concatenated Codes

8.8 Maximum a Posteriori Decoding of Convolutional Codes — The BCJR Algorithm

8.9 Turbo Codes and Iterative Decoding
8.9-1 Performance Bounds for Turbo Codes / 8.9-2 Iterative Decoding for Turbo Codes / 8.9-3 EXIT Chart Study of Iterative Decoding

8.10 Factor Graphs and the Sum-Product Algorithm
8.10-1 Tanner Graphs / 8.10-2 Factor Graphs / 8.10-3 The Sum-Product Algorithm / 8.10-4 MAP Decoding Using the Sum-Product Algorithm
8.11 Low Density Parity Check Codes
8.11–1 Decoding LDPC Codes

8.12 Coding for Bandwidth-Constrained Channels — Trellis Coded Modulation
8.12–1 Lattices and Trellis Coded Modulation /
8.12–2 Turbo-Coded Bandwidth Efficient Modulation

8.13 Bibliographical Notes and References
Problems

Chapter 9 Digital Communication Through Band-Limited Channels

9.1 Characterization of Band-Limited Channels

9.2 Signal Design for Band-Limited Channels
9.2–1 Design of Band-Limited Signals for No Intersymbol Interference—The Nyquist Criterion /
9.2–2 Design of Band-Limited Signals with Controlled ISI—Partial-Response Signals /
9.2–3 Data Detection for Controlled ISI /
9.2–4 Signal Design for Channels with Distortion

9.3 Optimum Receiver for Channels with ISI and AWGN
9.3–1 Optimum Maximum-Likelihood Receiver /
9.3–2 A Discrete-Time Model for a Channel with ISI /
9.3–3 Maximum-Likelihood Sequence Estimation (MLSE) for the Discrete-Time White Noise Filter Model /
9.3–4 Performance of MLSE for Channels with ISI

9.4 Linear Equalization
9.4–1 Peak Distortion Criterion /
9.4–2 Mean-Square-Error (MSE) Criterion /
9.4–3 Performance Characteristics of the MSE Equalizer /
9.4–4 Fractionally Spaced Equalizers /
9.4–5 Baseband and Passband Linear Equalizers

9.5 Decision-Feedback Equalization
9.5–1 Coefficient Optimization /
9.5–2 Performance Characteristics of DFE /
9.5–3 Predictive Decision-Feedback Equalizer /
9.5–4 Equalization at the Transmitter—Tomlinson-Harashima Precoding

9.6 Reduced Complexity ML Detectors

9.7 Iterative Equalization and Decoding—Turbo Equalization

9.8 Bibliographical Notes and References
Problems

Chapter 10 Adaptive Equalization

10.1 Adaptive Linear Equalizer
10.1–1 The Zero-Forcing Algorithm /
10.1–2 The LMS Algorithm /
10.1–3 Convergence Properties of the LMS
Contents

10.1 Excess MSE due to Noisy Gradient Estimates / 10.1-5 Accelerating the Initial Convergence Rate in the LMS Algorithm / 10.1-6 Adaptive Fractionally Spaced Equalizer—The Tap Leakage Algorithm / 10.1-7 An Adaptive Channel Estimator for ML Sequence Detection

10.2 Adaptive Decision-Feedback Equalizer 705
10.3 Adaptive Equalization of Trellis-Coded Signals 706
10.4 Recursive Least-Squares Algorithms for Adaptive Equalization / 10.4-1 Recursive Least-Squares (Kalman) Algorithm / 10.4-2 Linear Prediction and the Lattice Filter

10.5 Self-Recovering (Blind) Equalization / 10.5-1 Blind Equalization Based on the Maximum-Likelihood Criterion / 10.5-2 Stochastic Gradient Algorithms / 10.5-3 Blind Equalization Algorithms Based on Second- and Higher-Order Signal Statistics

10.6 Bibliographical Notes and References 731
Problems 732

Chapter 11 Multichannel and Multicarrier Systems 737

11.1 Multichannel Digital Communications in AWGN Channels / 11.1-1 Binary Signals / 11.1-2 M-ary Orthogonal Signals

11.2 Multicarrier Communications / 11.2-1 Single-Carrier Versus Multicarrier Modulation / 11.2-2 Capacity of a Nonideal Linear Filter Channel / 11.2-3 Orthogonal Frequency Division Multiplexing (OFDM) / 11.2-4 Modulation and Demodulation in an OFDM System / 11.2-5 An FFT Algorithm Implementation of an OFDM System / 11.2-6 Spectral Characteristics of Multicarrier Signals / 11.2-7 Bit and Power Allocation in Multicarrier Modulation / 11.2-8 Peak-to-Average Ratio in Multicarrier Modulation / 11.2-9 Channel Coding Considerations in Multicarrier Modulation

11.3 Bibliographical Notes and References 759
Problems 760

Chapter 12 Spread Spectrum Signals for Digital Communications 762

12.1 Model of Spread Spectrum Digital Communication System 763

12.2 Direct Sequence Spread Spectrum Signals 765 / 12.2-1 Error Rate Performance of the Decoder / 12.2-2 Some Applications of DS Spread Spectrum Signals / 12.2-3 Effect of Pulsed Interference on DS Spread
Contents

Spectrum Systems / 12.2–4 Excision of Narrowband Interference in DS Spread Spectrum Systems / 12.2–5 Generation of PN Sequences

12.3 Frequency-Hopped Spread Spectrum Signals 802

12.4 Other Types of Spread Spectrum Signals 814
12.5 Synchronization of Spread Spectrum Systems 815
12.6 Bibliographical Notes and References 823
Problems 823

Chapter 13 Fading Channels I: Characterization and Signaling 830

13.1 Characterization of Fading Multipath Channels 831
13.1–1 Channel Correlation Functions and Power Spectra / 13.1–2 Statistical Models for Fading Channels

13.2 The Effect of Signal Characteristics on the Choice of a Channel Model 844
13.3 Frequency-Nonselective, Slowly Fading Channel 846
13.4 Diversity Techniques for Fading Multipath Channels 850
13.4–1 Binary Signals / 13.4–2 Multiphase Signals / 13.4–3 M-ary Orthogonal Signals

13.5 Signaling over a Frequency-Selective, Slowly Fading Channel: The RAKE Demodulator 869
13.5–1 A Tapped-Delay-Line Channel Model / 13.5–2 The RAKE Demodulator / 13.5–3 Performance of RAKE Demodulator / 13.5–4 Receiver Structures for Channels with Intersymbol Interference

13.6 Multicarrier Modulation (OFDM) 884
13.6–1 Performance Degradation of an OFDM System due to Doppler Spreading / 13.6–2 Suppression of ICI in OFDM Systems

13.7 Bibliographical Notes and References 890
Problems 891

Chapter 14 Fading Channels II: Capacity and Coding 899

14.1 Capacity of Fading Channels 900
14.1–1 Capacity of Finite-State Channels

14.2 Ergodic and Outage Capacity 905
14.2–1 The Ergodic Capacity of the Rayleigh Fading Channel / 14.2–2 The Outage Capacity of Rayleigh Fading Channels

14.3 Coding for Fading Channels 918
Chapter 14 Performance of Coded Systems In Fading Channels

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>Coding for Fully Interleaved Channel Model</td>
<td>919</td>
</tr>
<tr>
<td>14.5</td>
<td>Trellis-Coded Modulation for Fading Channels</td>
<td>929</td>
</tr>
<tr>
<td>14.5-1</td>
<td>TCM Systems for Fading Channels</td>
<td>929</td>
</tr>
<tr>
<td>14.5-2</td>
<td>Multiple Trellis-Coded Modulation (MTCM)</td>
<td>929</td>
</tr>
<tr>
<td>14.6</td>
<td>Bit-Interleaved Coded Modulation</td>
<td>936</td>
</tr>
<tr>
<td>14.7</td>
<td>Coding in the Frequency Domain</td>
<td>942</td>
</tr>
<tr>
<td>14.7-1</td>
<td>Probability of Error for Soft Decision Decoding of Linear Binary Block Codes</td>
<td>942</td>
</tr>
<tr>
<td>14.7-2</td>
<td>Probability of Error for Hard-Decision Decoding of Linear Block Codes</td>
<td>942</td>
</tr>
<tr>
<td>14.7-3</td>
<td>Upper Bounds on the Performance of Convolutional Codes for a Rayleigh Fading Channel</td>
<td>942</td>
</tr>
<tr>
<td>14.7-4</td>
<td>Use of Constant-Weight Codes and Concatenated Codes, for a Fading Channel</td>
<td>942</td>
</tr>
<tr>
<td>14.8</td>
<td>The Channel Cutoff Rate for Fading Channels</td>
<td>957</td>
</tr>
<tr>
<td>14.8-1</td>
<td>Channel Cutoff Rate for Fully Interleaved Fading Channels with CSI at Receiver</td>
<td>957</td>
</tr>
</tbody>
</table>

Chapter 15 Multiple-Antenna Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Channel Models for Multiple-Antenna Systems</td>
<td>966</td>
</tr>
<tr>
<td>15.1-1</td>
<td>Signal Transmission Through a Slow Fading</td>
<td>966</td>
</tr>
<tr>
<td>15.1-2</td>
<td>Detection of Data Symbols in a MIMO System</td>
<td>966</td>
</tr>
<tr>
<td>15.1-3</td>
<td>Signal Transmission Through a Slow Fading Frequency-Selective MIMO Channel</td>
<td>966</td>
</tr>
<tr>
<td>15.2</td>
<td>Capacity of MIMO Channels</td>
<td>981</td>
</tr>
<tr>
<td>15.2-1</td>
<td>Mathematical Preliminaries</td>
<td>981</td>
</tr>
<tr>
<td>15.2-2</td>
<td>Capacity of a Frequency-Selective Deterministic MIMO Channel</td>
<td>981</td>
</tr>
<tr>
<td>15.2-3</td>
<td>Capacity of a Frequency-Nonselective Ergodic Random MIMO Channel</td>
<td>981</td>
</tr>
<tr>
<td>15.2-4</td>
<td>Outage Capacity</td>
<td>981</td>
</tr>
<tr>
<td>15.2-5</td>
<td>Capacity of MIMO Channel When the Channel Is Known at the Transmitter</td>
<td>981</td>
</tr>
<tr>
<td>15.3</td>
<td>Spread Spectrum Signals and Multicore Transmission</td>
<td>992</td>
</tr>
<tr>
<td>15.3-1</td>
<td>Orthogonal Spreading Sequences</td>
<td>992</td>
</tr>
<tr>
<td>15.3-2</td>
<td>Multiplexing Gain Versus Diversity Gain</td>
<td>992</td>
</tr>
<tr>
<td>15.4</td>
<td>Coding for MIMO Channels</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-1</td>
<td>Performance of Temporally Coded SISO Systems in Rayleigh Fading Channels</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-2</td>
<td>Bit-Interleaved Temporal Coding for MIMO Channels</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-3</td>
<td>Space-Time Block Codes for MIMO Channels</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-4</td>
<td>Pairwise Error Probability for a Space-Time Code</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-5</td>
<td>Space-Time Trellis Codes for MIMO Channels</td>
<td>1001</td>
</tr>
<tr>
<td>15.4-6</td>
<td>Concatenated Space-Time Codes and Turbo Codes</td>
<td>1001</td>
</tr>
</tbody>
</table>
Contents

15.5 Bibliographical Notes and References 1021
Problems 1021

Chapter 16 Multiuser Communications 1028

16.1 Introduction to Multiple Access Techniques 1028
16.2 Capacity of Multiple Access Methods 1031
16.3 Multiuser Detection in CDMA Systems 1036
 16.3-1 CDMA Signal and Channel Models / 16.3-2 The Optimum Multiuser Receiver / 16.3-3 Suboptimum Detectors / 16.3-4 Successive Interference Cancellation / 16.3-5 Other Types of Multiuser Detectors / 16.3-6 Performance Characteristics of Detectors
16.4 Multiuser MIMO Systems for Broadcast Channels 1053
 16.4-1 Linear Precoding of the Transmitted Signals / 16.4-2 Nonlinear Precoding of the Transmitted Signals—The QR Decomposition / 16.4-3 Nonlinear Vector Precoding / 16.4-4 Lattice Reduction Technique for Precoding
16.5 Random Access Methods 1068
 16.5-1 ALOHA Systems and Protocols / 16.5-2 Carrier Sense Systems and Protocols
16.6 Bibliographical Notes and References 1077
Problems 1078

Appendix A Matrices 1085
 A.1 Eigenvalues and Eigenvectors of a Matrix 1086
 A.2 Singular-Value Decomposition 1087
 A.3 Matrix Norm and Condition Number 1088
 A.4 The Moore–Penrose Pseudoinverse 1088

Appendix B Error Probability for Multichannel Binary Signals 1090

Appendix C Error Probabilities for Adaptive Reception of M-Phase Signals 1096
 C.1 Mathematical Model for an M-Phase Signaling Communication System 1096
 C.2 Characteristic Function and Probability Density Function of the Phase θ 1098
 C.3 Error Probabilities for Slowly Fading Rayleigh Channels 1100
 C.4 Error Probabilities for Time-Invariant and Ricean Fading Channels 1104

Appendix D Square Root Factorization 1107

References and Bibliography 1109

Index 1142