Contents

About the Authors xiii
Preface xv
Acknowledgements xix
List of Symbols xxi

PART I INTRODUCTION TO POWER SYSTEMS

1 Introduction 3
1.1 Stability and Control of a Dynamic System 3
1.2 Classification of Power System Dynamics 5
1.3 Two Pairs of Important Quantities:
 Reactive Power/Voltage and Real Power/Frequency 7
1.4 Stability of a Power System 9
1.5 Security of a Power System 9
1.6 Brief Historical Overview 12

2 Power System Components 15
2.1 Introduction 15
 2.1.1 Reliability of Supply 15
 2.1.2 Supplying Electrical Energy of Good Quality 16
 2.1.3 Economic Generation and Transmission 16
 2.1.4 Environmental Issues 16
2.2 Structure of the Electrical Power System 16
 2.2.1 Generation 18
 2.2.2 Transmission 18
 2.2.3 Distribution 19
 2.2.4 Demand 19
2.3 Generating Units 19
 2.3.1 Synchronous Generators 20
 2.3.2 Exciters and Automatic Voltage Regulators 21
 2.3.3 Turbines and their Governing Systems 25
2.4 Substations 35
2.5 Transmission and Distribution Network 35
 2.5.1 Overhead Lines and Underground Cables 35
 2.5.2 Transformers 36
 2.5.3 Shunt and Series Elements 41
 2.5.4 FACTS Devices 43
2.6 Protection
 2.6.1 Protection of Transmission Lines 54
 2.6.2 Protection of Transformers 56
 2.6.3 Protection of Busbars 57
 2.6.4 Protection of Generating Units 57

2.7 Wide Area Measurement Systems 58
 2.7.1 WAMS and WAMPAC Based on GPS Signal 58
 2.7.2 Phasors 59
 2.7.3 Phasor Measurement Unit 61
 2.7.4 Structures of WAMS and WAMPAC 62

3 The Power System in the Steady State 65
3.1 Transmission Lines 65
 3.1.1 Line Equations and the π-Equivalent Circuit 66
 3.1.2 Performance of the Transmission Line 67
 3.1.3 Underground Cables 72
3.2 Transformers 72
 3.2.1 Equivalent Circuit 72
 3.2.2 Off-Nominal Transformation Ratio 74
3.3 Synchronous Generators 76
 3.3.1 Round-Rotor Machines 76
 3.3.2 Salient-Pole Machines 83
 3.3.3 Synchronous Generator as a Power Source 89
 3.3.4 Reactive Power Capability Curve of a Round-Rotor Generator 91
 3.3.5 Voltage–Reactive Power Capability Characteristic V(Q) 95
 3.3.6 Including the Equivalent Network Impedance 100
3.4 Power System Loads 104
 3.4.1 Lighting and Heating 105
 3.4.2 Induction Motors 106
 3.4.3 Static Characteristics of the Load 110
 3.4.4 Load Models 111
3.5 Network Equations 113
3.6 Power Flows in Transmission Networks 118
 3.6.1 Control of Power Flows 118
 3.6.2 Calculation of Power Flows 122

PART II INTRODUCTION TO POWER SYSTEM DYNAMICS

4 Electromagnetic Phenomena 127
4.1 Fundamentals 127
4.2 Three-Phase Short Circuit on a Synchronous Generator 129
 4.2.1 Three-Phase Short Circuit with the Generator on No Load and Winding
 Resistance Neglected 129
 4.2.2 Including the Effect of Winding Resistance 133
 4.2.3 Armature Flux Paths and the Equivalent Reactances 134
 4.2.4 Generator Electromotive Forces and Equivalent Circuits 140
 4.2.5 Short-Circuit Currents with the Generator Initially on No Load 146
 4.2.6 Short-Circuit Currents in the Loaded Generator 149
 4.2.7 Subtransient Torque 150
6.6 Out-of-Step Protection Systems
 6.6.1 Impedance Loci During Power Swings 244
 6.6.2 Power Swing Blocking 248
 6.6.3 Pole-Slip Protection of Synchronous Generator 249
 6.6.4 Out-of-Step Tripping in a Network 251
 6.6.5 Example of a Blackout 253
6.7 Torsional Oscillations in the Drive Shaft 253
 6.7.1 The Torsional Natural Frequencies of the Turbine–Generator Rotor 253
 6.7.2 Effect of System Faults 259
 6.7.3 Subsynchronous Resonance 261

7 Wind Power 265
7.1 Wind Turbines 265
 7.1.1 Generator Systems 269
7.2 Induction Machine Equivalent Circuit 274
7.3 Induction Generator Coupled to the Grid 277
7.4 Induction Generators with Slightly Increased Speed Range via External Rotor Resistance 280
7.5 Induction Generators with Significantly Increased Speed Range: DFIGs 282
 7.5.1 Operation with the Injected Voltage in Phase with the Rotor Current 284
 7.5.2 Operation with the Injected Voltage out of Phase with the Rotor Current 286
 7.5.3 The DFIG as a Synchronous Generator 287
 7.5.4 Control Strategy for a DFIG 289
7.6 Fully Rated Converter Systems: Wide Speed Control 290
 7.6.1 Machine-Side Inverter 291
 7.6.2 Grid-Side Inverter 292
7.7 Peak Power Tracking of Variable Speed Wind Turbines 293
7.8 Connections of Wind Farms 294
7.9 Fault Behaviour of Induction Generators 294
 7.9.1 Fixed-Speed Induction Generators 294
 7.9.2 Variable-Speed Induction Generators 296
7.10 Influence of Wind Generators on Power System Stability 296

8 Voltage Stability 299
8.1 Network Feasibility 299
 8.1.1 Ideally Stiff Load 300
 8.1.2 Influence of the Load Characteristics 303
8.2 Stability Criteria 305
 8.2.1 The dQ/dV Criterion 305
 8.2.2 The dE/dV Criterion 308
 8.2.3 The dQ_G/dQ_L Criterion 309
8.3 Critical Load Demand and Voltage Collapse 310
 8.3.1 Effects of Increasing Demand 311
 8.3.2 Effect of Network Outages 314
 8.3.3 Influence of the Shape of the Load Characteristics 315
 8.3.4 Influence of the Voltage Control 317
8.4 Static Analysis 318
 8.4.1 Voltage Stability and Load Flow 318
 8.4.2 Voltage Stability Indices 320
Contents

8.5 Dynamic Analysis
- 8.5.1 The Dynamics of Voltage Collapse 321
- 8.5.2 Examples of Power System Blackouts 323
- 8.5.3 Computer Simulation of Voltage Collapse 326

8.6 Prevention of Voltage Collapse 327

8.7 Self-Excitation of a Generator Operating on a Capacitive Load
- 8.7.1 Parametric Resonance in RLC Circuits 329
- 8.7.2 Self-Excitation of a Generator with Open-Circuited Field Winding 330
- 8.7.3 Self-Excitation of a Generator with Closed Field Winding 332
- 8.7.4 Practical Possibility of Self-Excitation 334

9 Frequency Stability and Control 335

9.1 Automatic Generation Control
- 9.1.1 Generation Characteristic 336
- 9.1.2 Primary Control 339
- 9.1.3 Secondary Control 341
- 9.1.4 Tertiary Control 345
- 9.1.5 AGC as a Multi-Level Control 346
- 9.1.6 Defence Plan Against Frequency Instability 347
- 9.1.7 Quality Assessment of Frequency Control 349

9.2 Stage I – Rotor Swings in the Generators 350

9.3 Stage II – Frequency Drop 353

9.4 Stage III – Primary Control
- 9.4.1 The Importance of the Spinning Reserve 356
- 9.4.2 Frequency Collapse 358
- 9.4.3 Underfrequency Load Shedding 360

9.5 Stage IV – Secondary Control
- 9.5.1 Islanded Systems 361
- 9.5.2 Interconnected Systems and Tie-Line Oscillations 364

9.6 FACTS Devices in Tie-Lines
- 9.6.1 Incremental Model of a Multi-Machine System 371
- 9.6.2 State-Variable Control Based on Lyapunov Method 375
- 9.6.3 Example of Simulation Results 378
- 9.6.4 Coordination Between AGC and Series FACTS Devices in Tie-Lines 379

10 Stability Enhancement 383

10.1 Power System Stabilizers
- 10.1.1 PSS Applied to the Excitation System 384
- 10.1.2 PSS Applied to the Turbine Governor 387

10.2 Fast Valving 387

10.3 Braking Resistors 391

10.4 Generator Tripping
- 10.4.1 Preventive Tripping 393
- 10.4.2 Restitutive Tripping 394

10.5 Shunt FACTS Devices
- 10.5.1 Power-Angle Characteristic 395
- 10.5.2 State-Variable Control 397
- 10.5.3 Control Based on Local Measurements 400
- 10.5.4 Examples of Controllable Shunt Elements 404
- 10.5.5 Generalization to Multi-Machine Systems 406
- 10.5.6 Example of Simulation Results 414
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 Series Compensators</td>
<td>416</td>
</tr>
<tr>
<td>10.6.1 State-Variable Control</td>
<td>417</td>
</tr>
<tr>
<td>10.6.2 Interpretation Using the Equal Area Criterion</td>
<td>419</td>
</tr>
<tr>
<td>10.6.3 Control Strategy Based on the Squared Current</td>
<td>420</td>
</tr>
<tr>
<td>10.6.4 Control Based on Other Local Measurements</td>
<td>421</td>
</tr>
<tr>
<td>10.6.5 Simulation Results</td>
<td>423</td>
</tr>
<tr>
<td>10.7 Unified Power Flow Controller</td>
<td>423</td>
</tr>
<tr>
<td>10.7.1 Power–Angle Characteristic</td>
<td>424</td>
</tr>
<tr>
<td>10.7.2 State-Variable Control</td>
<td>426</td>
</tr>
<tr>
<td>10.7.3 Control Based on Local Measurements</td>
<td>428</td>
</tr>
<tr>
<td>10.7.4 Examples of Simulation Results</td>
<td>429</td>
</tr>
</tbody>
</table>

PART III ADVANCED TOPICS IN POWER SYSTEM DYNAMICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Advanced Power System Modelling</td>
<td>433</td>
</tr>
<tr>
<td>11.1 Synchronous Generator</td>
<td>433</td>
</tr>
<tr>
<td>11.1.1 Assumptions</td>
<td>434</td>
</tr>
<tr>
<td>11.1.2 The Flux Linkage Equations in the Stator Reference Frame</td>
<td>434</td>
</tr>
<tr>
<td>11.1.3 The Flux Linkage Equations in the Rotor Reference Frame</td>
<td>436</td>
</tr>
<tr>
<td>11.1.4 Voltage Equations</td>
<td>440</td>
</tr>
<tr>
<td>11.1.5 Generator Reactances in Terms of Circuit Quantities</td>
<td>443</td>
</tr>
<tr>
<td>11.1.6 Synchronous Generator Equations</td>
<td>446</td>
</tr>
<tr>
<td>11.1.7 Synchronous Generator Models</td>
<td>453</td>
</tr>
<tr>
<td>11.1.8 Saturation Effects</td>
<td>458</td>
</tr>
<tr>
<td>11.2 Excitation Systems</td>
<td>462</td>
</tr>
<tr>
<td>11.2.1 Transducer and Comparator Model</td>
<td>462</td>
</tr>
<tr>
<td>11.2.2 Exciters and Regulators</td>
<td>463</td>
</tr>
<tr>
<td>11.2.3 Power System Stabilizer (PSS)</td>
<td>470</td>
</tr>
<tr>
<td>11.3 Turbines and Turbine Governors</td>
<td>470</td>
</tr>
<tr>
<td>11.3.1 Steam Turbines</td>
<td>471</td>
</tr>
<tr>
<td>11.3.2 Hydraulic Turbines</td>
<td>476</td>
</tr>
<tr>
<td>11.3.3 Wind Turbines</td>
<td>481</td>
</tr>
<tr>
<td>11.4 Dynamic Load Models</td>
<td>485</td>
</tr>
<tr>
<td>11.5 FACTS Devices</td>
<td>488</td>
</tr>
<tr>
<td>11.5.1 Shunt FACTS Devices</td>
<td>488</td>
</tr>
<tr>
<td>11.5.2 Series FACTS Devices</td>
<td>488</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Steady-State Stability of Multi-Machine System</td>
<td>491</td>
</tr>
<tr>
<td>12.1 Mathematical Background</td>
<td>491</td>
</tr>
<tr>
<td>12.1.1 Eigenvalues and Eigenvectors</td>
<td>491</td>
</tr>
<tr>
<td>12.1.2 Diagonalization of a Square Real Matrix</td>
<td>496</td>
</tr>
<tr>
<td>12.1.3 Solution of Matrix Differential Equations</td>
<td>500</td>
</tr>
<tr>
<td>12.1.4 Modal and Sensitivity Analysis</td>
<td>509</td>
</tr>
<tr>
<td>12.1.5 Modal Form of the State Equation with Inputs</td>
<td>512</td>
</tr>
<tr>
<td>12.1.6 Nonlinear System</td>
<td>513</td>
</tr>
<tr>
<td>12.2 Steady-State Stability of Unregulated System</td>
<td>514</td>
</tr>
<tr>
<td>12.2.1 State-Space Equation</td>
<td>515</td>
</tr>
<tr>
<td>12.2.2 Simplified Steady-State Stability Conditions</td>
<td>517</td>
</tr>
<tr>
<td>12.2.3 Including the Voltage Characteristics of the Loads</td>
<td>521</td>
</tr>
<tr>
<td>12.2.4 Transfer Capability of the Network</td>
<td>522</td>
</tr>
</tbody>
</table>
12.3 Steady-State Stability of the Regulated System
 12.3.1 Generator and Network 523
 12.3.2 Including Excitation System Model and Voltage Control 525
 12.3.3 Linear State Equation of the System 528
 12.3.4 Examples 528

13 Power System Dynamic Simulation 535
13.1 Numerical Integration Methods 536
13.2 The Partitioned Solution 541
 13.2.1 Partial Matrix Inversion 543
 13.2.2 Matrix Factorization 547
 13.2.3 Newton's Method 548
 13.2.4 Ways of Avoiding Iterations and Multiple Network Solutions 551
13.3 The Simultaneous Solution Methods 553
13.4 Comparison Between the Methods 554

14 Power System Model Reduction — Equivalents 557
14.1 Types of Equivalents 557
14.2 Network Transformation 559
 14.2.1 Elimination of Nodes 559
 14.2.2 Aggregation of Nodes Using Dimo's Method 562
 14.2.3 Aggregation of Nodes Using Zhukov's Method 563
 14.2.4 Coherency 565
14.3 Aggregation of Generating Units 567
14.4 Equivalent Model of External Subsystem 568
14.5 Coherency Recognition 569
14.6 Properties of Coherency-Based Equivalents 573
 14.6.1 Electrical Interpretation of Zhukov's Aggregation 573
 14.6.2 Incremental Equivalent Model 575
 14.6.3 Modal Interpretation of Exact Coherency 579
 14.6.4 Eigenvalues and Eigenvectors of the Equivalent Model 582
 14.6.5 Equilibrium Points of the Equivalent Model 589

Appendix 593
References 613
Index 623