Sixth Edition

Fundamentals of Fluid Mechanics

International Student Version

BRUCE R. MUNSON
DONALD F. YOUNG
Department of Aerospace Engineering and Engineering Mechanics

THEODORE H. OKIISHI
Department of Mechanical Engineering
Iowa State University
Ames, Iowa, USA

WADE W. HUEBSCH
Department of Mechanical and Aerospace Engineering
West Virginia University
Morgantown, West Virginia, USA
Contents

1 Introduction

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Some Characteristics of Fluids</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Dimensions, Dimensional Homogeneity, and Units</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Analysis of Fluid Behavior</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Measures of Fluid Mass and Weight</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Ideal Gas Law</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Viscosity</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Compressibility of Fluids</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Vapor Pressure</td>
<td>20</td>
</tr>
<tr>
<td>1.9 Surface Tension</td>
<td>23</td>
</tr>
<tr>
<td>1.10 A Brief Look Back in History</td>
<td>24</td>
</tr>
<tr>
<td>1.11 Chapter Summary and Study Guide</td>
<td>27</td>
</tr>
</tbody>
</table>

2 Fluid Statics

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Pressure at a Point</td>
<td>38</td>
</tr>
<tr>
<td>2.2 Basic Equation for Pressure Field</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Pressure Variation in a Fluid at Rest</td>
<td>40</td>
</tr>
<tr>
<td>2.3.1 Incompressible Fluid</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2 Compressible Fluid</td>
<td>42</td>
</tr>
<tr>
<td>2.4 Standard Atmosphere</td>
<td>45</td>
</tr>
<tr>
<td>2.5 Measurement of Pressure</td>
<td>47</td>
</tr>
<tr>
<td>2.6 Manometry</td>
<td>48</td>
</tr>
<tr>
<td>2.6.1 Piezometer Tube</td>
<td>50</td>
</tr>
<tr>
<td>2.6.2 U-Tube Manometer</td>
<td>51</td>
</tr>
<tr>
<td>2.6.3 Inclined-Tube Manometer</td>
<td>54</td>
</tr>
<tr>
<td>2.7 Mechanical and Electronic Pressure Measuring Devices</td>
<td>55</td>
</tr>
</tbody>
</table>

3 Elementary Fluid Dynamics — The Bernoulli Equation

<table>
<thead>
<tr>
<th>Learning Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Newton’s Second Law</td>
<td>94</td>
</tr>
<tr>
<td>3.2 (\mathbf{F} = ma) along a Streamline</td>
<td>96</td>
</tr>
<tr>
<td>3.3 (\mathbf{F} = ma) Normal to a Streamline</td>
<td>100</td>
</tr>
<tr>
<td>3.4 Physical Interpretation</td>
<td>102</td>
</tr>
<tr>
<td>3.5 Static, Stagnation, Dynamic, and Total Pressure</td>
<td>105</td>
</tr>
<tr>
<td>3.6 Examples of Use of the Bernoulli Equation</td>
<td>110</td>
</tr>
<tr>
<td>3.6.1 Free Jets</td>
<td>110</td>
</tr>
<tr>
<td>3.6.2 Confined Flows</td>
<td>112</td>
</tr>
<tr>
<td>3.6.3 Flowrate Measurement</td>
<td>118</td>
</tr>
<tr>
<td>3.7 The Energy Line and the Hydraulic Grade Line</td>
<td>123</td>
</tr>
<tr>
<td>3.8 Restrictions on Use of the Bernoulli Equation</td>
<td>126</td>
</tr>
<tr>
<td>3.8.1 Compressibility Effects</td>
<td>126</td>
</tr>
<tr>
<td>3.8.2 Unsteady Effects</td>
<td>128</td>
</tr>
<tr>
<td>3.8.3 Rotational Effects</td>
<td>130</td>
</tr>
<tr>
<td>3.8.4 Other Restrictions</td>
<td>131</td>
</tr>
<tr>
<td>3.9 Chapter Summary and Study Guide</td>
<td>131</td>
</tr>
</tbody>
</table>

References | 133 |
Review Problems | 133 |
Problems | 133 |
6.4.3 Irrotational Flow
6.4.4 The Bernoulli Equation for Irrotational Flow
6.4.5 The Velocity Potential
6.5 Some Basic, Plane Potential Flows
6.5.1 Uniform Flow
6.5.2 Source and Sink
6.5.3 Vortex
6.5.4 Doublet
6.6 Superposition of Basic, Plane Potential Flows
6.6.1 Source in a Uniform Stream—Half-Body
6.6.2 Rankine Ovals
6.6.3 Flow around a Circular Cylinder
6.7 Other Aspects of Potential Flow Analysis
6.8 Viscous Flow
6.8.1 Stress-Deformation Relationships
6.8.2 The Navier–Stokes Equations
6.9 Some Simple Solutions for Viscous, Incompressible Fluids
6.9.1 Steady, Laminar Flow between Fixed Parallel Plates
6.9.2 Couette Flow
6.9.3 Steady, Laminar Flow in Circular Tubes
6.9.4 Steady, Axial, Laminar Flow in an Annulus
6.10 Other Aspects of Differential Analysis
6.10.1 Numerical Methods
6.11 Chapter Summary and Study Guide
References
Review Problems
Problems

7 DIMENSIONAL ANALYSIS, SIMILITUDE, AND MODELING 332

Learning Objectives
7.1 Dimensional Analysis
7.2 Buckingham Pi Theorem
7.3 Determination of Pi Terms
7.4 Some Additional Comments About Dimensional Analysis
7.4.1 Selection of Variables
7.4.2 Determination of Reference Dimensions
7.4.3 Uniqueness of Pi Terms
7.5 Determination of Pi Terms by Inspection
7.6 Common Dimensionless Groups in Fluid Mechanics
7.7 Correlation of Experimental Data
7.7.1 Problems with One Pi Term
7.7.2 Problems with Two or More Pi Terms
7.8 Modeling and Similitude
7.8.1 Theory of Models
7.8.2 Model Scales
7.8.3 Practical Aspects of Using Models
7.9 Some Typical Model Studies
7.9.1 Flow through Closed Conduits
7.9.2 Flow around Immersed Bodies
7.9.3 Flow with a Free Surface
7.10 Similitude Based on Governing Differential Equations
7.11 Chapter Summary and Study Guide
References
Review Problems
Problems

8 VISCOS FLOW IN PIPES 383

Learning Objectives
8.1 General Characteristics of Pipe Flow
8.1.1 Laminar or Turbulent Flow
8.1.2 Entrance Region and Fully Developed Flow
8.1.3 Pressure and Shear Stress
8.2 Fully Developed Laminar Flow
8.2.1 From F = ma Applied to a Fluid Element
8.2.2 From the Navier–Stokes Equations
8.2.3 From Dimensional Analysis
8.2.4 Energy Considerations
8.3 Fully Developed Turbulent Flow
8.3.1 Transition from Laminar to Turbulent Flow
8.3.2 Turbulent Shear Stress
8.3.3 Turbulent Velocity Profile
8.3.4 Turbulence Modeling
8.3.5 Chaos and Turbulence
8.4 Dimensional Analysis of Pipe Flow
8.4.1 Major Losses
8.4.2 Minor Losses
8.4.3 Noncircular Conduits
8.5 Pipe Flow Examples
8.5.1 Single Pipes
8.5.2 Multiple Pipe Systems
8.6 Pipe Flowrate Measurement
8.6.1 Pipe Flowrate Meters
8.6.2 Volume Flow Meters
8.7 Chapter Summary and Study Guide
References
Review Problems
Problems
Contents

9 FLOW OVER IMMERSED BODIES

9.1 General External Flow Characteristics
9.1.1 Lift and Drag Concepts
9.1.2 Characteristics of Flow Past an Object

9.2 Boundary Layer Characteristics
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate
9.2.2 Prandtl/Blasius Boundary Layer Solution
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate
9.2.4 Transition from Laminar to Turbulent Flow
9.2.5 Turbulent Boundary Layer Flow
9.2.6 Effects of Pressure Gradient
9.2.7 Momentum-Integral Boundary Layer Equation with Nonzero Pressure Gradient

9.3 Drag
9.3.1 Friction Drag
9.3.2 Pressure Drag
9.3.3 Drag Coefficient Data and Examples

9.4 Lift
9.4.1 Surface Pressure Distribution
9.4.2 Circulation

9.5 Chapter Summary and Study Guide

References
Review Problems
Problems

10 OPEN-CHANNEL FLOW

10.1 General Characteristics of Open-Channel Flow
10.2 Surface Waves
10.2.1 Wave Speed
10.2.2 Froude Number Effects

10.3 Energy Considerations
10.3.1 Specific Energy
10.3.2 Channel Depth Variations

10.4 Uniform Depth Channel Flow
10.4.1 Uniform Flow Approximations
10.4.2 The Chezy and Manning Equations
10.4.3 Uniform Depth Examples

10.5 Gradually Varied Flow
10.5.1 Classification of Surface Shapes
10.5.2 Examples of Gradually Varied Flows

10.6 Rapidly Varied Flow
10.6.1 The Hydraulic Jump
10.6.2 Sharp-Crested Weirs
10.6.3 Broad-Crested Weirs
10.6.4 Underflow Gates

10.7 Chapter Summary and Study Guide
References
Review Problems
Problems

11 COMRESSIBLE FLOW

11.1 Ideal Gas Relationships
11.2 Mach Number and Speed of Sound
11.3 Categories of Compressible Flow
11.4 Isentropic Flow of an Ideal Gas
11.4.1 Effect of Variations in Flow Cross-Sectional Area
11.4.2 Converging-Diverging Duct Flow
11.4.3 Constant-Area Duct Flow
11.5 Nonisentropic Flow of an Ideal Gas
11.5.1 Adiabatic Constant-Area Duct Flow with Friction (Fanno Flow)
11.5.2 Frictionless Constant-Area Duct Flow with Heat Transfer (Rayleigh Flow)
11.5.3 Normal Shock Waves

11.6 Analogy between Compressible and Open-Channel Flows

11.7 Two-Dimensional Compressible Flow

11.8 Chapter Summary and Study Guide
References
Review Problems
Problems

12 TURBOMACHINES

12.1 Introduction
12.2 Basic Energy Considerations
12.3 Basic Angular Momentum Considerations
12.4 The Centrifugal Pump

12.5 Dimensionless Parameters and Similarity Laws
12.5.1 Special Pump Scaling Laws
12.5.2 Specific Speed
12.5.3 Suction Specific Speed