Gauge theory of elementary particle physics

Problems and solutions

TA-PEI CHENG
University of Missouri – St. Louis

and

LING-FONG LI
Carnegie Mellon University

CLARENDON PRESS • OXFORD
2000
Contents

1 Field quantization
1.1 Simple exercises in $\lambda \phi^4$ theory 1
1.2 Auxiliary field 6
1.3 Disconnected diagrams 8
1.4 Simple external field problem 9
1.5 Path integral for a free particle 11
1.6 Path integral for a general quadratic action 13
1.7 Spreading of a wave packet 16
1.8 Path integral for a harmonic oscillator 17
1.9 Path integral for a partition function 21
1.10 Partition function for an SHO system 23
1.11 Non-standard path-integral representation 25
1.12 Weyl ordering of operators 26
1.13 Generating functional for a scalar field 32
1.14 Poles in Green’s function 35

2 Renormalization
2.1 Counterterms in $\lambda \phi^4$ theory and in QED 37
2.2 Divergences in non-linear chiral theory 39
2.3 Divergences in lower-dimensional field theories 41
2.4 n-Dimensional ‘spherical’ coordinates 43
2.5 Some integrals in dimensional regularization 46
2.6 Vacuum polarization and subtraction schemes 49
2.7 Renormalization of $\lambda \phi^3$ theory in n dimensions 53
2.8 Renormalization of composite operators 57
2.9 Cutkosky rules 59

3 Renormalization group
3.1 Homogeneous renormalization-group equation 63
3.2 Renormalization constants 64
3.3 β-function for QED 67
3.4 Behaviour of \bar{g} near a simple fixed point 69
3.5 Running coupling near a general fixed point 70
3.6 One-loop renormalization-group equation in massless $\lambda \phi^4$ theory 71
3.7 β-function for the Yukawa coupling 72
3.8 Solving the renormalization-group equation by Coleman’s method 75
3.9 Anomalous dimensions for composite operators 77
4 Group theory and the quark model
4.1 Unitary and hermitian matrices 78
4.2 SU(n) matrices 79
4.3 Reality of SU(2) representations 79
4.4 An identity for unitary matrices 81
4.5 An identity for SU(2) matrices 82
4.6 SU(3) algebra in terms of quark fields 83
4.7 Combining two spin-\(\frac{1}{2}\) states 85
4.8 The SU(2) adjoint representation 87
4.9 Couplings of SU(2) vector representations 89
4.10 Isospin breaking effects 90
4.11 Spin wave function of three quarks 93
4.12 Permutation symmetry in the spin–isospin space 96
4.13 Combining two fundamental representations 97
4.14 SU(3) invariant octet baryon–meson couplings 100
4.15 Isospin wave functions of two pions 105
4.16 Isospins in non-leptonic weak processes 107

5 Chiral symmetry
5.1 Another derivation of Noether's current 110
5.2 Lagrangian with second derivatives 111
5.3 Conservation laws in a non-relativistic theory 113
5.4 Symmetries of the linear \(\sigma\)-model 115
5.5 Spontaneous symmetry breaking in the \(\sigma\)-model 122
5.6 PCAC in the \(\sigma\)-model 123
5.7 Non-linear \(\sigma\)-model I 126
5.8 Non-linear \(\sigma\)-model II 128
5.9 Non-linear \(\sigma\)-model III 130
5.10 SSB by two scalars in the vector representation 133

6 Renormalization and symmetry
6.1 Path-integral derivation of axial anomaly 136
6.2 Axial anomaly and \(\eta \rightarrow \gamma \gamma\) 140
6.3 Soft symmetry breaking and renormalizability 142
6.4 Calculation of the one-loop effective potential 143

7 The Parton model and scaling
7.1 The Gottfried sum rule 146
7.2 Calculation of OPE Wilson coefficients 147
7.3 \(\sigma_{tot}(e^+e^- \rightarrow \text{hadrons})\) and short-distance physics 151
7.4 OPE of two charged weak currents 155
7.5 The total decay rate of the \(W\)-boson 156

8 Gauge symmetries
8.1 The gauge field in tensor notation 158
8.2 Gauge field and geometry 161
8.3 General relativity as a gauge theory 163
13 **Topics in flavourdynamics**
13.1 Anomaly-free condition in a technicolour theory 238
13.2 Pseudo-Goldstone bosons in a technicolour model 239
13.3 Properties of Majorana fermions 239
13.4 $\mu \to e\gamma$ and heavy neutrinos 244
13.5 Leptonic mixings in a vector-like theory 250
13.6 Muonium–antimuonium transition 252

14 **Grand unification**
14.1 Content of SU(5) representations 255
14.2 Higgs potential for SU(5) adjoint scalars 256
14.3 Massive gauge bosons in SU(5) 258
14.4 Baryon number non-conserving operators 260
14.5 SO(n) group algebra 260
14.6 Spinor representations of SO(n) 263
14.7 Relation between SO(2n) and SU(n) groups 267
14.8 Construction of SO(2n) spinors 269

15 **Magnetic monopoles**
15.1 The Sine–Gordon equation 275
15.2 Planar vortex field 280
15.3 Stability of soliton 282
15.4 Monopole and angular momentum 283

16 **Instantons**
16.1 The saddle-point method 289
16.2 An application of the saddle-point method 292
16.3 A Euclidean double-well problem 295

References 301

Index 303