In vitro susceptibility of glial cells obtained from the adult canine brain for different strains of canine distemper virus

Thesis
Submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY (PhD)
at the University of Veterinary Medicine Hannover

by
Enzo Angiolino Orlando D’cundi
from Ciudad Ojeda, Venezuela

Germany, Hannover 2009
CHAPTER 1 General introduction

1.1 Canine Distemper Virus
 1.1.1 In vitro studies
 1.1.2 Pathogenesis of the lesions in the central nervous system

1.2 Cellular elements of the brain
 1.2.1 Different brain cell populations
 1.2.1.1 Glial precursors
 1.2.1.2 Microglia
 1.2.1.3 Neurons
 1.2.1.4 Astrocytes
 1.2.1.5 Oligodendrocytes

1.3 Aims of the study

CHAPTER 2 Vimentin-positive astrocytes in canine distemper – a target for canine distemper virus especially in chronic demyelinating lesions?

2.1 Abstract

2.2 Introduction

2.3 Materials and methods
 2.3.1 Animals, histology and neuropathological classification
 2.3.2 Immunohistochemistry
 2.3.3 In situ hybridization
 2.3.4 Immunofluorescence double-labeling
 2.3.5 Cell culture
 2.3.6 Infection of mixed brain cell cultures
 2.3.7 Immunofluorescence
 2.3.8 Statistical analysis

2.4 Results
 2.4.1 Neuropathological findings
 2.4.2 Immunohistochemical, in situ hybridization and immunofluorescence findings
2.4.3 CDV infection of astrocytes *in vitro* 33

2.5 Discussion 36

2.6 Acknowledgements 39

2.7 References 39

2.8 Authors' contributions 43

CHAPTER 3 *In vitro* characterisation and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain 44

3.1 Abstract 45

3.2 Introduction 45

3.3 Materials and Methods 47

3.3.1 Cell culture 47

3.3.2 Antibody-based purification of Schwann cell-like glia from adult canine brain 48

3.3.3 Cell proliferation assays 49

3.3.4 Infection of mixed brain cell cultures 49

3.3.5 Immunofluorescence 50

3.3.6 Virus titration assay 52

3.3.7 Statistical analysis 53

3.4. Results 53

3.4.1 Characterisation of adult non-infected canine brain cell cultures 53

3.4.2 *In vitro* infection of adult canine brain cells with CDV-OndeGFP and CDV-R252: qualitative determinations 54

3.4.3 *In vitro* infection of adult canine brain cells with CDV-OndeGFP and CDV-R252: quantitative determinations 55

3.4.4 *In vitro* characterization of purified p75^{NTR}+ glia 62

3.5 Discussion 64

3.5.1 Characterisation of primary cultures from adult canine brain 65

3.5.2 Adult canine astrocytes and microglia display differential susceptibility to infection with different CDV strains *in vitro* 66

3.5.3 Adult canine p75^{NTR}+ glia represents a prominent target to CDV *in vitro* 67
CHAPTER 4 Cell-cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell-like brain glia (SCBG) to canine distemper virus (CDV) infection in vitro

4.1 Abstract
4.2 Introduction
4.3 Materials and Methods
4.3.1 Mixed cell cultures from the adult canine brain
4.3.2 Establishment of pure fibroblast cultures from the adult canine skin
4.3.3 Antibody-based purification of Schwann cell-like brain glia (SCBG)
4.3.4 CDV infection of mixed brain cell cultures, purified SCBG and cutaneous fibroblast cultures
4.3.5 Immunofluorescence assays
4.3.6 Virus titration assay
4.3.7 Statistical analysis
4.4 Results
4.4.1 Infection of mixed brain cell cultures with different CDV strains
4.4.2 Infection of purified cultures from adult canine Schwann cell-like brain glia (SCBG) and cutaneous fibroblasts with different CDV strains
4.4.3 Comparative analysis of CDV infection of mixed and pure glial cultures
4.5 Discussion
4.5.1 The differential susceptibility of astrocytes and microglia to CDV strains in vitro may help to explain the course of demyelinating CDV lesions in vivo
4.5.2 The reduction of the susceptibility to CDV appears to be a particular property of purified SCBG
4.6 Acknowledgements
CHAPTER 5 General discussion

5.1 Adult canine brain cell cultures display a specific cellular composition compared to neonates

5.2 Differential infection of astrocytes and microglia by different CDV strains \textit{in vitro}

5.3 CDV infection disrupts GFAP neurofilament in astrocytes \textit{in vitro}

5.4 Schwann cell-like brain glia (SCBG) is the predominant cell type in cell cultures from the adult canine brain and represents a prominent target to CDV infection \textit{in vitro}

5.5 Cell-cell interaction may determine the susceptibility of Schwann cell-like brain glia (SCBG) to CDV infection \textit{in vitro}