Contents

Chapter 1 — Sources and Characteristics of Remote Sensing Image Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction to Data Sources</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Characteristics of Digital Image Data</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Spectral Ranges Commonly Used in Remote Sensing</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Concluding Remarks</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Weather Satellite Sensors</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Polar Orbiting and Geosynchronous Satellites</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 The NOAA AVHRR (Advanced Very High Resolution Radiometer)</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 The Nimbus CZCS (Coastal Zone Colour Scanner)</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4 GMS VISSR (Visible and Infrared Spin Scan Radiometer)</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Earth Resource Satellite Sensors in the Visible and Infrared Regions</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 The Landsat System</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 The Landsat Instrument Complement</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3 The Return Beam Vidicon (RBV)</td>
<td>11</td>
</tr>
<tr>
<td>1.3.4 The Multispectral Scanner (MSS)</td>
<td>11</td>
</tr>
<tr>
<td>1.3.5 The Thematic Mapper (TM)</td>
<td>13</td>
</tr>
<tr>
<td>1.3.6 The SPOT High Resolution Visible (HRV) Imaging Instrument</td>
<td>14</td>
</tr>
<tr>
<td>1.3.7 The Skylab S 192 Multispectral Scanner</td>
<td>15</td>
</tr>
<tr>
<td>1.3.8 The Heat Capacity Mapping Radiometer (HCMR)</td>
<td>15</td>
</tr>
<tr>
<td>1.3.9 Marine Observation Satellite (MOS)</td>
<td>16</td>
</tr>
<tr>
<td>1.3.10 Indian Remote Sensing Satellite (IRS)</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Aircraft Scanners in the Visible and Infrared Regions</td>
<td>17</td>
</tr>
<tr>
<td>1.4.1 General Considerations</td>
<td>17</td>
</tr>
<tr>
<td>1.4.2 The Daedalus AADS 1240/1260 Multispectral Line Scanner</td>
<td>18</td>
</tr>
<tr>
<td>1.4.3 The Airborne Thematic Mapper (ATM)</td>
<td>19</td>
</tr>
<tr>
<td>1.4.4 The Thermal Infrared Multispectral Scanner (TIMS)</td>
<td>20</td>
</tr>
<tr>
<td>1.4.5 The MDA MEIS-II Linear Array Aircraft Scanner</td>
<td>21</td>
</tr>
<tr>
<td>1.4.6 Imaging Spectrometers</td>
<td>21</td>
</tr>
<tr>
<td>1.5 Image Data Sources in the Microwave Region</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1 Side Looking Airborne Radar and Synthetic Aperture Radar</td>
<td>24</td>
</tr>
<tr>
<td>1.5.2 The Seasat SAR</td>
<td>26</td>
</tr>
<tr>
<td>1.5.3 Shuttle Imaging Radar-A (SIR-A)</td>
<td>27</td>
</tr>
<tr>
<td>1.5.4 Shuttle Imaging Radar-B (SIR-B)</td>
<td>27</td>
</tr>
<tr>
<td>1.5.5 ERS-1</td>
<td>27</td>
</tr>
</tbody>
</table>
Chapter 2 — Error Correction and Registration of Image Data

2.1 Sources of Radiometric Distortion .. 39
2.1.1 The Effect of the Atmosphere on Radiation 39
2.1.2 Atmospheric Effects on Remote Sensing Imagery 43
2.1.3 Instrumentation Errors .. 43
2.2 Correction of Radiometric Distortion 44
2.2.1 Detailed Correction of Atmospheric Effects 44
2.2.2 Bulk Correction of Atmospheric Effects 46
2.2.3 Correction of Instrumentation Errors 47
2.3 Sources of Geometric Distortion .. 48
2.3.1 Earth Rotation Effects .. 49
2.3.2 Panoramic Distortion .. 51
2.3.3 Earth Curvature .. 53
2.3.4 Scan Time Skew .. 54
2.3.5 Variations in Platform Altitude, Velocity and Attitude 54
2.3.6 Aspect Ratio Distortion ... 55
2.3.7 Sensor Scan Nonlinearities ... 55
2.4 Correction of Geometric Distortion .. 56
2.4.1 Use of Mapping Polynomials for Image Correction 56
2.4.1.1 Mapping Polynomials and Ground Control Points 57
2.4.1.2 Resampling .. 58
2.4.1.3 Interpolation ... 58
2.4.1.4 Choice of Control Points ... 60
2.4.1.5 Example of Registration to a Map Grid 61
2.4.2 Mathematical Modelling .. 64
2.4.2.1 Aspect Ratio Correction ... 64
2.4.2.2 Earth Rotation Skew Correction 64
2.4.2.3 Image Orientation to North-South 65
2.4.2.4 Correction of Panoramic Effects 65
2.4.2.5 Combining the Corrections .. 65
2.5 Image Registration .. 66
Chapter 6 — Principal Components Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5</td>
<td>Application of Principal Components in Image Enhancement and Display</td>
<td>144</td>
</tr>
<tr>
<td>6.1.6</td>
<td>The Taylor Method of Contrast Enhancement</td>
<td>145</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Other Applications of Principal Components Analysis</td>
<td>148</td>
</tr>
<tr>
<td>6.2</td>
<td>The Kauth-Thomas Tasseled Cap Transformation</td>
<td>148</td>
</tr>
<tr>
<td>6.3</td>
<td>Image Arithmetic, Band Ratios and Vegetation Indices</td>
<td>152</td>
</tr>
</tbody>
</table>

References for Chapter 6 | 152

Problems | 153

Chapter 7 — Fourier Transformation of Image Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>7.2</td>
<td>Special Functions</td>
<td>155</td>
</tr>
<tr>
<td>7.2.1</td>
<td>The Complex Exponential Function</td>
<td>155</td>
</tr>
<tr>
<td>7.2.2</td>
<td>The Dirac Delta Function</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Properties of the Delta Function</td>
<td>157</td>
</tr>
<tr>
<td>7.2.3</td>
<td>The Heaviside Step Function</td>
<td>157</td>
</tr>
<tr>
<td>7.3</td>
<td>Fourier Series</td>
<td>158</td>
</tr>
<tr>
<td>7.4</td>
<td>The Fourier Transform</td>
<td>159</td>
</tr>
<tr>
<td>7.5</td>
<td>Convolution</td>
<td>160</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The Convolution Integral</td>
<td>160</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Convolution with an Impulse</td>
<td>162</td>
</tr>
<tr>
<td>7.5.3</td>
<td>The Convolution Theorem</td>
<td>162</td>
</tr>
<tr>
<td>7.6</td>
<td>Sampling Theory</td>
<td>162</td>
</tr>
<tr>
<td>7.7</td>
<td>The Discrete Fourier Transform</td>
<td>165</td>
</tr>
<tr>
<td>7.7.1</td>
<td>The Discrete Spectrum</td>
<td>165</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Discrete Fourier Transform Formulae</td>
<td>166</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Properties of the Discrete Fourier Transform</td>
<td>167</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Computation of the Discrete Fourier Transform</td>
<td>168</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Development of the Fast Fourier Transform Algorithm</td>
<td>168</td>
</tr>
<tr>
<td>7.7.6</td>
<td>Computational Cost of the Fast Fourier Transform</td>
<td>171</td>
</tr>
<tr>
<td>7.7.7</td>
<td>Bit Shuffling and Storage Considerations</td>
<td>172</td>
</tr>
<tr>
<td>7.8</td>
<td>The Discrete Fourier Transform of an Image</td>
<td>173</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Definition</td>
<td>173</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Evaluation of the Two Dimensional, Discrete Fourier Transform</td>
<td>173</td>
</tr>
<tr>
<td>7.8.3</td>
<td>The Concept of Spatial Frequency</td>
<td>174</td>
</tr>
<tr>
<td>7.8.4</td>
<td>Image Filtering for Geometric Enhancement</td>
<td>176</td>
</tr>
<tr>
<td>7.8.5</td>
<td>Convolution in Two Dimensions</td>
<td>176</td>
</tr>
<tr>
<td>7.9</td>
<td>Concluding Remarks</td>
<td>177</td>
</tr>
</tbody>
</table>

References for Chapter 7 | 178

Problems | 179
Chapter 8 — Supervised Classification Techniques

Part I. Standard Classification Algorithms

8.1 Steps in Supervised Classification
8.2 Maximum Likelihood Classification
8.2.1 Bayes' Classification
8.2.2 The Maximum Likelihood Decision Rule
8.2.3 Multivariate Normal Class Models
8.2.4 Decision Surfaces
8.2.5 Thresholds
8.2.6 Number of Training Pixels Required for Each Class
8.2.7 A Simple Illustration
8.3 Minimum Distance Classification
8.3.1 The Case of Limited Training Data
8.3.2 The Discriminant Function
8.3.3 Degeneration of Maximum Likelihood to Minimum Distance Classification
8.3.4 Decision Surfaces
8.3.5 Thresholds
8.4 Parallelepiped Classification
8.5 Classification Time Comparison of the Classifiers
8.6 The Mahalanobis Classifier
8.7 Table Look Up Classification

Part II. More Advanced Considerations

8.8 Context Classification
8.8.1 The Concept of Spatial Context
8.8.2 Context Classification by Image Pre-Processing
8.8.3 Post Classification Filtering
8.8.4 Probabilistic Label Relaxation
8.8.4.1 The Basic Algorithm
8.8.4.2 The Neighbourhood Function
8.8.4.3 Determining the Compatibility Coefficients
8.8.4.4 The Final Step — Stopping the Process
8.8.4.5 Examples
8.9 Classification of Mixed Image Data
8.9.1 The Stacked Vector Approach
8.9.2 Statistical Methods
8.9.3 The Theory of Evidence
8.9.3.1 The Concept of Evidential Mass
8.9.3.2 Combining Evidence — the Orthogonal Sum
Chapter 10 — Feature Reduction

10.1 Feature Reduction and Separability .. 245
10.2 Separability Measures for Multivariate Normal Spectral Class Models .. 245
 10.2.1 Distribution Overlaps ... 245
 10.2.2 Divergence ... 246
 10.2.2.1 A General Expression ... 246
 10.2.2.2 Divergence of a Pair of Normal Distributions 248
 10.2.2.3 Use of Divergence for Feature Selection 248
 10.2.2.4 A Problem with Divergence .. 249
 10.2.3 The Jeffries-Matusita (JM) Distance 250
 10.2.3.1 Definition .. 250
 10.2.3.2 Comparison of Divergence and JM Distance 251
 10.2.4 Transformed Divergence .. 251
 10.2.4.1 Definition .. 251
 10.2.4.2 Relation between Transformed Divergence and Probability of Correct Classification 252
 10.2.4.3 Use of Transformed Divergence in Clustering 253
 10.3 Separability Measures for Minimum Distance Classification 253
 10.4 Feature Reduction by Data Transformation 253
 10.4.1 Feature Reduction Using the Principal Components Transformation ... 253
 10.4.2 Canonical Analysis as a Feature Selection Procedure 255
 10.4.2.1 Within Class and Among Class Covariance Matrices 256
 10.4.2.2 A Separability Measure ... 257
 10.4.2.3 The Generalised Eigenvalue Equation 258
 10.4.2.4 An Example ... 259
 10.4.3 Arithmetic Transformations ... 261
References for Chapter 10 ... 262
Problems ... 262

Chapter 11 — Image Classification Methodologies 265

11.1 Introduction .. 265
11.2 Supervised Classification .. 265
 11.2.1 Outline ... 265
 11.2.2 Determination of Training Data ... 266
 11.2.3 Feature Selection ... 266
 11.2.4 Detecting Multimodal Distributions 267
 11.2.5 Presentation of Results ... 267
 11.2.6 Effect of Resampling on Classification 268
 11.3 Unsupervised Classification .. 268
 11.3.1 Outline, and Comparison with Supervised Methods 268
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.2 Feature Selection</td>
<td>270</td>
</tr>
<tr>
<td>11.4 A Hybrid Supervised/Unsupervised Methodology</td>
<td>270</td>
</tr>
<tr>
<td>11.4.1 The Essential Steps</td>
<td>270</td>
</tr>
<tr>
<td>11.4.2 Choice of the Clustering Regions</td>
<td>271</td>
</tr>
<tr>
<td>11.4.3 Rationalisation of the Number of Spectral Classes</td>
<td>271</td>
</tr>
<tr>
<td>11.5 Assessment of Classification Accuracy</td>
<td>271</td>
</tr>
<tr>
<td>11.6 Case Study 1: Irrigated Area Determination</td>
<td>276</td>
</tr>
<tr>
<td>11.6.1 Background</td>
<td>276</td>
</tr>
<tr>
<td>11.6.2 The CSIRO-ORSER Image Analysis Software</td>
<td>276</td>
</tr>
<tr>
<td>11.6.3 The Study Region</td>
<td>276</td>
</tr>
<tr>
<td>11.6.4 Clustering</td>
<td>277</td>
</tr>
<tr>
<td>11.6.5 Signature Generation</td>
<td>280</td>
</tr>
<tr>
<td>11.6.6 Classification and Results</td>
<td>280</td>
</tr>
<tr>
<td>11.6.7 Concluding Remarks</td>
<td>280</td>
</tr>
<tr>
<td>11.7 Case Study 2: Multitemporal Monitoring of Bush Fires</td>
<td>282</td>
</tr>
<tr>
<td>11.7.1 Background</td>
<td>282</td>
</tr>
<tr>
<td>11.7.2 Simple Illustration of the Technique</td>
<td>282</td>
</tr>
<tr>
<td>11.7.3 The Study Area</td>
<td>284</td>
</tr>
<tr>
<td>11.7.4 Registration</td>
<td>284</td>
</tr>
<tr>
<td>11.7.5 Principal Components Transformation</td>
<td>285</td>
</tr>
<tr>
<td>11.7.6 Classification of Principal Components Imagery</td>
<td>287</td>
</tr>
<tr>
<td>References for Chapter 11</td>
<td>289</td>
</tr>
<tr>
<td>Problems</td>
<td>290</td>
</tr>
</tbody>
</table>

Chapter 12 — Knowledge-Based Image Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>293</td>
</tr>
<tr>
<td>12.2 Knowledge Processing: Emulating Photointerpretation</td>
<td>294</td>
</tr>
<tr>
<td>12.3 Fundamentals of a Knowledge-Based Image Analysis System</td>
<td>295</td>
</tr>
<tr>
<td>12.3.1 Structure</td>
<td>295</td>
</tr>
<tr>
<td>12.3.2 Representation of Knowledge: Rules</td>
<td>296</td>
</tr>
<tr>
<td>12.3.3 The Inference Mechanism</td>
<td>297</td>
</tr>
<tr>
<td>12.4 Handling Multisource and Multisensor Data</td>
<td>298</td>
</tr>
<tr>
<td>12.5 An Example</td>
<td>300</td>
</tr>
<tr>
<td>12.5.1 Background</td>
<td>300</td>
</tr>
<tr>
<td>12.5.2 Rules as Justifiers for a Labelling Proposition</td>
<td>301</td>
</tr>
<tr>
<td>12.5.3 Endorsement of a Labelling Proposition</td>
<td>302</td>
</tr>
<tr>
<td>12.5.4 Knowledge Base and Results</td>
<td>303</td>
</tr>
<tr>
<td>References for Chapter 12</td>
<td>305</td>
</tr>
<tr>
<td>Problems</td>
<td>306</td>
</tr>
</tbody>
</table>

Appendix A — Satellite Altitudes and Periods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References for Appendix A</td>
<td>308</td>
</tr>
</tbody>
</table>