Contents

PREFACE xvii

1 SIGNALS AND SPECTRA 1

1.1 Digital Communication Signal Processing, 3
 1.1.1 Why Digital?, 3
 1.1.2 Typical Block Diagram and Transformations, 4
 1.1.3 Basic Digital Communication Nomenclature, 11
 1.1.4 Digital versus Analog Performance Criteria, 13

1.2 Classification of Signals, 14
 1.2.1 Deterministic and Random Signals, 14
 1.2.2 Periodic and Nonperiodic Signals, 14
 1.2.3 Analog and Discrete Signals, 14
 1.2.4 Energy and Power Signals, 14
 1.2.5 The Unit Impulse Function, 16

1.3 Spectral Density, 16
 1.3.1 Energy Spectral Density, 17
 1.3.2 Power Spectral Density, 17

1.4 Autocorrelation, 19
 1.4.1 Autocorrelation of an Energy Signal, 19
 1.4.2 Autocorrelation of a Periodic (Power) Signal, 20

1.5 Random Signals, 20
 1.5.1 Random Variables, 20
 1.5.2 Random Processes, 22
 1.5.3 Time Averaging and Ergodicity, 25
 1.5.4 Power Spectral Density of a Random Process, 26
 1.5.5 Noise in Communication Systems, 30
1.6 Signal Transmission through Linear Systems, 33
 1.6.1 Impulse Response, 34
 1.6.2 Frequency Transfer Function, 35
 1.6.3 Distortionless Transmission, 36
 1.6.4 Signals, Circuits, and Spectra, 42
1.7 Bandwidth of Digital Data, 45
 1.7.1 Baseband versus Bandpass, 45
 1.7.2 The Bandwidth Dilemma, 47
1.8 Conclusion, 51

2 FORMATTING AND BASEBAND MODULATION 55

2.1 Baseband Systems, 56
2.2 Formatting Textual Data (Character Coding), 58
2.3 Messages, Characters, and Symbols, 61
 2.3.1 Example of Messages, Characters, and Symbols, 61
2.4 Formatting Analog Information, 62
 2.4.1 The Sampling Theorem, 63
 2.4.2 Aliasing, 69
 2.4.3 Why Oversample? 72
 2.4.4 Signal Interface for a Digital System, 75
2.5 Sources of Corruption, 76
 2.5.1 Sampling and Quantizing Effects, 76
 2.5.2 Channel Effects, 77
 2.5.3 Signal-to-Noise Ratio for Quantized Pulses, 78
2.6 Pulse Code Modulation, 79
2.7 Uniform and Nonuniform Quantization, 81
 2.7.1 Statistics of Speech Amplitudes, 81
 2.7.2 Nonuniform Quantization, 83
 2.7.3 Companding Characteristics, 84
2.8 Baseband Modulation, 85
 2.8.1 Waveform Representation of Binary Digits, 85
 2.8.2 PCM Waveform Types, 85
 2.8.3 Spectral Attributes of PCM Waveforms, 89
 2.8.4 Bits per PCM Word and Bits per Symbol, 90
 2.8.5 M-ary Pulse Modulation Waveforms, 91
2.9 Correlative Coding, 94
 2.9.1 Duobinary Signaling, 94
 2.9.2 Duobinary Decoding, 95
 2.9.3 Precoding, 96
 2.9.4 Duobinary Equivalent Transfer Function, 97
 2.9.5 Comparison of Binary with Duobinary Signaling, 98
 2.9.6 Polybinary Signaling, 99
2.10 Conclusion, 100
3 BASEBAND DEMODULATION/DETECTION

3.1 Signals and Noise, 106
 3.1.1 Error-Performance Degradation in Communication Systems, 106
 3.1.2 Demodulation and Detection, 107
 3.1.3 A Vectorial View of Signals and Noise, 110
 3.1.4 The Basic SNR Parameter for Digital Communication Systems, 117
 3.1.5 Why E_b/N_0 Is a Natural Figure of Merit, 118

3.2 Detection of Binary Signals in Gaussian Noise, 119
 3.2.1 Maximum Likelihood Receiver Structure, 119
 3.2.2 The Matched Filter, 122
 3.2.3 Correlation Realization of the Matched Filter, 124
 3.2.4 Optimizing Error Performance, 127
 3.2.5 Error Probability Performance of Binary Signaling, 131

3.3 Intersymbol Interference, 136
 3.3.1 Pulse Shaping to Reduce ISI, 138
 3.3.2 Two Types of Error-Performance Degradation, 142
 3.3.3 Demodulation/Detection of Shaped Pulses, 145

3.4 Equalization, 149
 3.4.1 Channel Characterization, 149
 3.4.2 Eye Pattern, 151
 3.4.3 Equalizer Filter Types, 152
 3.4.4 Preset and Adaptive Equalization, 158
 3.4.5 Filter Update Rate, 160

3.5 Conclusion, 161

4 BANDPASS MODULATION AND DEMODULATION/DETECTION

4.1 Why Modulate? 168

4.2 Digital Bandpass Modulation Techniques, 169
 4.2.1 Phasor Representation of a Sinusoid, 171
 4.2.2 Phase Shift Keying, 173
 4.2.3 Frequency Shift Keying, 175
 4.2.4 Amplitude Shift Keying, 175
 4.2.5 Amplitude Phase Keying, 176
 4.2.6 Waveform Amplitude Coefficient, 176

4.3 Detection of Signals in Gaussian Noise, 177
 4.3.1 Decision Regions, 177
 4.3.2 Correlation Receiver, 178

4.4 Coherent Detection, 183
 4.4.1 Coherent Detection of PSK, 183
 4.4.2 Sampled Matched Filter, 184
 4.4.3 Coherent Detection of Multiple Phase Shift Keying, 188
 4.4.4 Coherent Detection of FSK, 191
4.5 Noncoherent Detection, 194
 4.5.1 Detection of Differential PSK, 194
 4.5.2 Binary Differential PSK Example, 196
 4.5.3 Noncoherent Detection of FSK, 198
 4.5.4 Required Tone Spacing for Noncoherent Orthogonal FSK, 200

4.6 Complex Envelope, 204
 4.6.1 Quadrature Implementation of a Modulator, 205
 4.6.2 D8PSK Modulator Example, 206
 4.6.3 D8PSK Demodulator Example, 208

4.7 Error Performance for Binary Systems, 209
 4.7.1 Probability of Bit Error for Coherently Detected BPSK, 209
 4.7.2 Probability of Bit Error for Coherently Detected
 Differentially Encoded Binary PSK, 211
 4.7.3 Probability of Bit Error for Coherently Detected
 Binary Orthogonal FSK, 213
 4.7.4 Probability of Bit Error for Noncoherently Detected
 Binary Orthogonal FSK, 213
 4.7.5 Probability of Bit Error for Binary DPSK, 216
 4.7.6 Comparison of Bit Error Performance for Various
 Modulation Types, 218

4.8 M-ary Signaling and Performance, 219
 4.8.1 Ideal Probability of Bit Error Performance, 219
 4.8.2 M-ary Signaling, 220
 4.8.3 Vectorial View of MPSK Signaling, 222
 4.8.4 BPSK and QPSK Have the Same Bit Error Probability, 223
 4.8.5 Vectorial View of MFSK Signaling, 225

4.9 Symbol Error Performance for M-ary Systems (M > 2), 229
 4.9.1 Probability of Symbol Error for MPSK, 229
 4.9.2 Probability of Symbol Error for MFSK, 230
 4.9.3 Bit Error Probability versus Symbol Error Probability
 for Orthogonal Signals, 232
 4.9.4 Bit Error Probability versus Symbol Error Probability
 for Multiple Phase Signaling, 234
 4.9.5 Effects of Intersymbol Interference, 235

4.10 Conclusion, 236

5 COMMUNICATIONS LINK ANALYSIS 242

5.1 What the System Link Budget Tells the System Engineer, 243
5.2 The Channel, 244
 5.2.1 The Concept of Free Space, 244
 5.2.2 Error-Performance Degradation, 245
 5.2.3 Sources of Signal Loss and Noise, 245
5.3 Received Signal Power and Noise Power, 250
 5.3.1 The Range Equation, 250
 5.3.2 Received Signal Power as a Function of Frequency, 254
 5.3.3 Path Loss is Frequency Dependent, 256
 5.3.4 Thermal Noise Power, 258
5.4 Link Budget Analysis, 259
 5.4.1 Two E_s/N_0 Values of Interest, 262
 5.4.2 Link Budgets are Typically Calculated in Decibels, 263
 5.4.3 How Much Link Margin is Enough? 264
 5.4.4 Link Availability, 266
5.5 Noise Figure, Noise Temperature, and System Temperature, 270
 5.5.1 Noise Figure, 270
 5.5.2 Noise Temperature, 273
 5.5.3 Line Loss, 274
 5.5.4 Composite Noise Figure and Composite Noise Temperature, 276
 5.5.5 System Effective Temperature, 277
 5.5.6 Sky Noise Temperature, 282
5.6 Sample Link Analysis, 286
 5.6.1 Link Budget Details, 287
 5.6.2 Receiver Figure of Merit, 289
 5.6.3 Received Isotropic Power, 289
5.7 Satellite Repeaters, 290
 5.7.1 Nonregenerative Repeaters, 291
 5.7.2 Nonlinear Repeater Amplifiers, 295
5.8 System Trade-Offs, 296
5.9 Conclusion, 297

6 CHANNEL CODING: PART 1 304

6.1 Waveform Coding and Structured Sequences, 305
 6.1.1 Antipodal and Orthogonal Signals, 307
 6.1.2 M-ary Signaling, 308
 6.1.3 Waveform Coding, 309
 6.1.4 Waveform-Coding System Example, 313
6.2 Types of Error Control, 315
 6.2.1 Terminal Connectivity, 315
 6.2.2 Automatic Repeat Request, 316
6.3 Structured Sequences, 317
 6.3.1 Channel Models, 318
 6.3.2 Code Rate and Redundancy, 320
 6.3.3 Parity Check Codes, 321
 6.3.4 Why Use Error-Correction Coding? 323
8 CHANNEL CODING: PART 3

8.1 Reed–Solomon Codes, 437
 8.1.1 Reed–Solomon Error Probability, 438
 8.1.2 Why R–S Codes Perform Well Against Burst Noise, 441
 8.1.3 R–S Performance as a Function of Size, Redundancy, and Code Rate, 441
 8.1.4 Finite Fields, 445
 8.1.5 Reed–Solomon Encoding, 450
 8.1.6 Reed–Solomon Decoding, 454

8.2 Interleaving and Concatenated Codes, 461
 8.2.1 Block Interleaving, 463
 8.2.2 Convolutional Interleaving, 466
 8.2.3 Concatenated Codes, 468

8.3 Coding and Interleaving Applied to the Compact Disc Digital Audio System, 469
 8.3.1 CIRC Encoding, 470
 8.3.2 CIRC Decoding, 472
 8.3.3 Interpolation and Muting, 474

8.4 Turbo Codes, 475
 8.4.1 Turbo Code Concepts, 477
 8.4.2 Log-Likelihood Algebra, 481
 8.4.3 Product Code Example, 482
 8.4.4 Encoding with Recursive Systematic Codes, 488
 8.4.5 A Feedback Decoder, 493
9 MODULATION AND CODING TRADE-OFFS

9.1 Goals of the Communications System Designer, 521
9.2 Error Probability Plane, 522
9.3 Nyquist Minimum Bandwidth, 524
9.4 Shannon–Hartley Capacity Theorem, 525
 9.4.1 Shannon Limit, 528
 9.4.2 Entropy, 529
 9.4.3 Equivocation and Effective Transmission Rate, 532
9.5 Bandwidth Efficiency Plane, 534
 9.5.1 Bandwidth Efficiency of MPSK and MFSK Modulation, 535
 9.5.2 Analogies Between Bandwidth-Efficiency
 and Error Probability Planes, 536
9.6 Modulation and Coding Trade-Offs, 537
9.7 Defining, Designing, and Evaluating Digital
 Communication Systems, 538
 9.7.1 M-ary Signaling, 539
 9.7.2 Bandwidth-Limited Systems, 540
 9.7.3 Power-Limited Systems, 541
 9.7.4 Requirements for MPSK and MFSK Signaling, 542
 9.7.5 Bandwidth-Limited Uncoded System Example, 543
 9.7.6 Power-Limited Uncoded System Example, 545
 9.7.7 Bandwidth-Limited and Power-Limited
 Coded System Example, 547
9.8 Bandwidth-Efficient Modulation, 555
 9.8.1 QPSK and Offset QPSK Signaling, 555
 9.8.2 Minimum Shift Keying, 559
 9.8.3 Quadrature Amplitude Modulation, 563
9.9 Modulation and Coding for Bandlimited Channels, 566
 9.9.1 Commercial Telephone Modems, 567
 9.9.2 Signal Constellation Boundaries, 568
 9.9.3 Higher Dimensional Signal Constellations, 569
 9.9.4 Higher-Density Lattice Structures, 572
 9.9.5 Combined Gain: N-Sphere Mapping and Dense Lattice, 573
9.10 Trellis-Coded Modulation, 573
 9.10.1 The Idea Behind Trellis-Coded Modulation (TCM), 574
 9.10.2 TCM Encoding, 576
 9.10.3 TCM Decoding, 580
 9.10.4 Other Trellis Codes, 583
10 SYNCHRONIZATION

10.1 Introduction, 599
 10.1.1 Synchronization Defined, 599
 10.1.2 Costs versus Benefits, 601
 10.1.3 Approach and Assumptions, 602
10.2 Receiver Synchronization, 603
 10.2.1 Frequency and Phase Synchronization, 603
 10.2.2 Symbol Synchronization—Discrete Symbol Modulations, 625
 10.2.3 Synchronization with Continuous-Phase Modulations (CPM), 631
 10.2.4 Frame Synchronization, 639
10.3 Network Synchronization, 643
 10.3.1 Open-Loop Transmitter Synchronization, 644
 10.3.2 Closed-Loop Transmitter Synchronization, 647
10.4 Conclusion, 649

11 MULTIPLEXING AND MULTIPLE ACCESS

11.1 Allocation of the Communications Resource, 657
 11.1.1 Frequency-Division Multiplexing/Multiple Access, 660
 11.1.2 Time-Division Multiplexing/Multiple Access, 665
 11.1.3 Communications Resource Channelization, 668
 11.1.4 Performance Comparison of FDMA and TDMA, 668
 11.1.5 Code-Division Multiple Access, 672
 11.1.6 Space-Division and Polarization-Division Multiple Access, 674
11.2 Multiple Access Communications System and Architecture, 676
 11.2.1 Multiple Access Information Flow, 677
 11.2.2 Demand Assignment Multiple Access, 678
11.3 Access Algorithms, 678
 11.3.1 ALOHA, 678
 11.3.2 Slotted ALOHA, 682
 11.3.3 Reservation-ALOHA, 683
 11.3.4 Performance Comparison of S-ALOHA and R-ALOHA, 684
 11.3.5 Polling Techniques, 686
11.4 Multiple Access Techniques Employed with INTELSAT, 689
 11.4.1 Preassigned FDM/FM/FDMA or MCPC Operation, 690
 11.4.2 MCPC Modes of Accessing an INTELSAT Satellite, 690
 11.4.3 SPADE Operation, 693
 11.4.4 TDMA in INTELSAT, 698
 11.4.5 Satellite-Switched TDMA in INTELSAT, 704
11.5 Multiple Access Techniques for Local Area Networks, 708
11.5.1 Carrier-Sense Multiple Access Networks, 708
11.5.2 Token-Ring Networks, 710
11.5.3 Performance Comparison of CSMA/CD and Token-Ring Networks, 711
11.6 Conclusion, 713

12 SPREAD-SPECTRUM TECHNIQUES 718

12.1 Spread-Spectrum Overview, 719
12.1.1 The Beneficial Attributes of Spread-Spectrum Systems, 720
12.1.2 A Catalog of Spreading Techniques, 724
12.1.3 Model for Direct-Sequence Spread-Spectrum Interference Rejection, 726
12.1.4 Historical Background, 727
12.2 Pseudonoise Sequences, 728
12.2.1 Randomness Properties, 729
12.2.2 Shift Register Sequences, 729
12.2.3 PN Autocorrelation Function, 730
12.3 Direct-Sequence Spread-Spectrum Systems, 732
12.3.1 Example of Direct Sequencing, 734
12.3.2 Processing Gain and Performance, 735
12.4 Frequency Hopping Systems, 738
12.4.1 Frequency Hopping Example, 740
12.4.2 Robustness, 741
12.4.3 Frequency Hopping with Diversity, 741
12.4.4 Fast Hopping versus Slow Hopping, 742
12.4.5 FFH/MFSK Demodulator, 744
12.4.6 Processing Gain, 745
12.5 Synchronization, 745
12.5.1 Acquisition, 746
12.5.2 Tracking, 751
12.6 Jamming Considerations, 754
12.6.1 The Jamming Game, 754
12.6.2 Broadband Noise Jamming, 759
12.6.3 Partial-Band Noise Jamming, 760
12.6.4 Multiple-Tone Jamming, 763
12.6.5 Pulse Jamming, 763
12.6.6 Repeat-Back Jamming, 765
12.6.7 BLADES System, 768
12.7 Commercial Applications, 769
12.7.1 Code-Division Multiple Access, 769
12.7.2 Multipath Channels, 771
12.7.3 The FCC Part 15 Rules for Spread-Spectrum Systems, 772
12.7.4 Direct Sequence versus Frequency Hopping, 773
12.8 Cellular Systems, 775
12.8.1 Direct Sequence CDMA, 776
13 SOURCES CODING

13.1 Sources, 804
 13.1.1 Discrete Sources, 804
 13.1.2 Waveform Sources, 809
13.2 Amplitude Quantizing, 811
 13.2.1 Quantizing Noise, 813
 13.2.2 Uniform Quantizing, 816
 13.2.3 Saturation, 820
 13.2.4 Dithering, 823
 13.2.5 Nonuniform Quantizing, 826
13.3 Differential Pulse-Code Modulation, 835
 13.3.1 One-Tap Prediction, 838
 13.3.2 N-Tap Prediction, 839
 13.3.3 Delta Modulation, 841
 13.3.4 Sigma-Delta Modulation, 842
 13.3.5 Sigma-Delta A-to-D Converter (ADC), 847
 13.3.6 Sigma-Delta D-to-A Converter (DAC), 848
13.4 Adaptive Prediction, 850
 13.4.1 Forward Prediction, 851
 13.4.2 Synthesis/Analysis Coding, 852
13.5 Block Coding, 853
 13.5.1 Vector Quantizing, 854
13.6 Transform Coding, 856
 13.6.1 Quantization for Transform Coding, 857
 13.6.2 Subband Coding, 857
13.7 Source Coding for Digital Data, 859
 13.7.1 Properties of Codes, 860
 13.7.2 Huffman Codes, 862
 13.7.3 Run-Length Codes, 866
13.8 Examples of Source Coding, 870
 13.8.1 Audio Compression, 870
 13.8.2 Image Compression, 875
13.9 Conclusion, 884

14 ENCRYPTION AND DECRYPTION

14.1 Models, Goals, and Early Cipher Systems, 891
 14.1.1 A Model of the Encryption and Decryption Process, 893
 14.1.2 System Goals, 893
 14.1.3 Classic Threats, 893
14.1.4 Classic Ciphers, 894

14.2 The Secrecy of a Cipher System, 897
14.2.1 Perfect Secrecy, 897
14.2.2 Entropy and Equivocation, 900
14.2.3 Rate of a Language and Redundancy, 902
14.2.4 Unicity Distance and Ideal Secrecy, 902

14.3 Practical Security, 905
14.3.1 Confusion and Diffusion, 905
14.3.2 Substitution, 905
14.3.3 Permutation, 907
14.3.4 Product Cipher Systems, 908
14.3.5 The Data Encryption Standard, 909

14.4 Stream Encryption, 915
14.4.1 Example of Key Generation Using a Linear Feedback Shift Register, 916
14.4.2 Vulnerabilities of Linear Feedback Shift Registers, 917
14.4.3 Synchronous and Self-Synchronous Stream Encryption Systems, 919

14.5 Public Key Cryptosystems, 920
14.5.1 Signature Authentication using a Public Key Cryptosystem, 921
14.5.2 A Trapdoor One-Way Function, 922
14.5.3 The Rivest–Shamir–Adelman Scheme, 923
14.5.4 The Knapsack Problem, 925
14.5.5 A Public Key Cryptosystem based on a Trapdoor Knapsack, 927

14.6 Pretty Good Privacy, 929
14.6.1 Triple-DES, CAST, and IDEA, 931
14.6.2 Diffie-Hellman (Elgamal Variation) and RSA, 935
14.6.3 PGP Message Encryption, 936
14.6.4 PGP Authentication and Signature, 937

14.7 Conclusion, 940

15 FADING CHANNELS

15.1 The Challenge of Communicating over Fading Channels, 945

15.2 Characterizing Mobile-Radio Propagation, 947
15.2.1 Large-Scale Fading, 951
15.2.2 Small-Scale Fading, 953

15.3 Signal Time-Spreading, 958
15.3.1 Signal Time-Spreading Viewed in the Time-Delay Domain, 958
15.3.2 Signal Time-Spreading Viewed in the Frequency Domain, 960
15.3.3 Examples of Flat Fading and Frequency-Selective Fading, 965

15.4 Time Variance of the Channel Caused by Motion, 966
15.4.1 Time Variance Viewed in the Time Domain, 966
15.4.2 Time Variance Viewed in the Doppler-Shift Domain, 969
15.4.3 Performance over a Slow- and Flat-Fading Rayleigh Channel, 975
15.5 Mitigating the Degradation Effects of Fading, 978
 15.5.1 Mitigation to Combat Frequency-Selective Distortion, 980
 15.5.2 Mitigation to Combat Fast-Fading Distortion, 982
 15.5.3 Mitigation to Combat Loss in SNR, 983
 15.5.4 Diversity Techniques, 984
 15.5.5 Modulation Types for Fading Channels, 987
 15.5.6 The Role of an Interleave, 988

15.6 Summary of the Key Parameters Characterizing Fading Channels, 992
 15.6.1 Fast Fading Distortion: Case 1, 992
 15.6.2 Frequency-Selective Fading Distortion: Case 2, 993
 15.6.3 Fast-Fading and Frequency-Selective Fading Distortion: Case 3, 993

15.7 Applications: Mitigating the Effects of Frequency-Selective Fading, 996
 15.7.1 The Viterbi Equalizer as Applied to GSM, 996
 15.7.2 The Rake Receiver as Applied to Direct-Sequence Spread-Spectrum (DS/SS) Systems, 999

15.8 Conclusion, 1001

A A REVIEW OF FOURIER TECHNIQUES 1012

A.1 Signals, Spectra, and Linear Systems, 1012
A.2 Fourier Techniques for Linear System Analysis, 1012
 A.2.1 Fourier Series Transform, 1014
 A.2.2 Spectrum of a Pulse Train, 1018
 A.2.3 Fourier Integral Transform, 1020
A.3 Fourier Transform Properties, 1021
 A.3.1 Time Shifting Property, 1022
 A.3.2 Frequency Shifting Property, 1022
A.4 Useful Functions, 1023
 A.4.1 Unit Impulse Function, 1023
 A.4.2 Spectrum of a Sinusoid, 1023
A.5 Convolution, 1025
 A.5.1 Graphical Example of Convolution, 1027
 A.5.2 Time Convolution Property, 1028
 A.5.3 Frequency Convolution Property, 1030
 A.5.4 Convolution of a Function with a Unit Impulse, 1030
 A.5.5 Demodulation Application of Convolution, 1031
A.6 Tables of Fourier Transforms and Operations, 1033

B FUNDAMENTALS OF STATISTICAL DECISION THEORY 1035

B.1 Bayes’ Theorem, 1035
 B.1.1 Discrete Form of Bayes’ Theorem, 1036
 B.1.2 Mixed Form of Bayes’ Theorem, 1038
B.2 Decision Theory, 1040
 B.2.1 Components of the Decision Theory Problem, 1040