Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Corrected Printing</td>
<td>vii</td>
</tr>
<tr>
<td>Preface to the First Printing</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>FUNDAMENTAL FIXED-POINT PRINCIPLES</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>The Banach Fixed-Point Theorem and Iterative Methods</td>
<td>15</td>
</tr>
<tr>
<td>§1.1. The Banach Fixed-Point Theorem</td>
<td>16</td>
</tr>
<tr>
<td>§1.2. Continuous Dependence on a Parameter</td>
<td>18</td>
</tr>
<tr>
<td>§1.3. The Significance of the Banach Fixed-Point Theorem</td>
<td>19</td>
</tr>
<tr>
<td>§1.4. Applications to Nonlinear Equations</td>
<td>22</td>
</tr>
<tr>
<td>§1.5. Accelerated Convergence and Newton's Method</td>
<td>25</td>
</tr>
<tr>
<td>§1.6. The Picard–Lindelöf Theorem</td>
<td>27</td>
</tr>
<tr>
<td>§1.7. The Main Theorem for Iterative Methods for Linear Operator</td>
<td>30</td>
</tr>
<tr>
<td>Equations</td>
<td></td>
</tr>
<tr>
<td>§1.8. Applications to Systems of Linear Equations</td>
<td>35</td>
</tr>
<tr>
<td>§1.9. Applications to Linear Integral Equations</td>
<td>36</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>The Schauder Fixed-Point Theorem and Compactness</td>
<td>49</td>
</tr>
<tr>
<td>§2.1. Extension Theorem</td>
<td>50</td>
</tr>
<tr>
<td>§2.2. Retracts</td>
<td>51</td>
</tr>
</tbody>
</table>
Applications of the Fundamental Fixed-Point Principles

Chapter 3
Ordinary Differential Equations in B-spaces
§3.1. Integration of Vector Functions of One Real Variable t 75
§3.2. Differentiation of Vector Functions of One Real Variable t 76
§3.3. Generalized Picard–Lindelöf Theorem 78
§3.4. Generalized Peano Theorem 81
§3.5. Gronwall's Lemma 82
§3.6. Stability of Solutions and Existence of Periodic Solutions 84
§3.7. Stability Theory and Plane Vector Fields, Electrical Circuits, Limit Cycles 91
§3.8. Perspectives 99

Chapter 4
Differential Calculus and the Implicit Function Theorem 130
§4.1. Formal Differential Calculus 131
§4.2. The Derivatives of Fréchet and Gâteaux 135
§4.3. Sum Rule, Chain Rule, and Product Rule 138
§4.4. Partial Derivatives 140
§4.5. Higher Differentials and Higher Derivatives 141
§4.6. Generalized Taylor's Theorem 148
§4.7. The Implicit Function Theorem 149
§4.8. Applications of the Implicit Function Theorem 155
§4.9. Attracting and Repelling Fixed Points and Stability 157
§4.10. Applications to Biological Equilibria 162
§4.12. The Generalized Frobenius Theorem and Total Differential Equations 166
§4.13. Diffeomorphisms and the Local Inverse Mapping Theorem 171
§4.15. The Surjective Implicit Function Theorem 176
§4.17. A Look at Manifolds 179
§4.18. Submersions and a Look at the Sard–Smale Theorem 183
§4.19. The Parametrized Sard Theorem and Constructive Fixed-Point Theory 188

CHAPTER 5
Newton’s Method 206
§5.1. A Theorem on Local Convergence 208
§5.2. The Kantorović Semi-Local Convergence Theorem 210

CHAPTER 6
Continuation with Respect to a Parameter 226
§6.1. The Continuation Method for Linear Operators 229
§6.2. B-spaces of Hölder Continuous Functions 230
§6.3. Applications to Linear Partial Differential Equations 233
§6.4. Functional-Analytic Interpretation of the Existence Theorem and its Generalizations 235
§6.5. Applications to Semi-linear Differential Equations 239
§6.6. The Implicit Function Theorem and the Continuation Method 241
§6.7. Ordinary Differential Equations in B-spaces and the Continuation Method 243
§6.8. The Leray–Schauder Principle 245
§6.9. Applications to Quasi-linear Elliptic Differential Equations 246

CHAPTER 7
Positive Operators 269
§7.1. Ordered B-spaces 275
§7.2. Monotone Increasing Operators 277
§7.3. The Abstract Gronwall Lemma and its Applications to Integral Inequalities 281
§7.4. Supersolutions, Subsolutions, Iterative Methods, and Stability 282
§7.5. Applications 285
§7.6. Minorant Methods and Positive Eigensolutions 286
§7.7. Applications 288
§7.8. The Krein–Rutman Theorem and its Applications 289
§7.9. Asymptotic Linear Operators 296
§7.10. Main Theorem for Operators of Monotone Type 298
§7.11. Application to a Heat Conduction Problem 301
Contents

§7.12. Existence of Three Solutions 304
§7.15. Applications to Hammerstein Integral Equations 316
§7.16. Applications to Semi-linear Elliptic Boundary-Value Problems 317
§7.17. Application to Elliptic Equations with Nonlinear Boundary Conditions 326
§7.18. Applications to Boundary Initial-Value Problems for Parabolic Differential Equations and Stability 329

CHAPTER 8
Analytic Bifurcation Theory
§8.1. A Necessary Condition for Existence of a Bifurcation Point 358
§8.2. Analytic Operators 360
§8.3. An Analytic Majorant Method 363
§8.4. Fredholm Operators 365
§8.5. The Spectrum of Compact Linear Operators (Riesz–Schauder Theory) 372
§8.6. The Branching Equations of Ljapunov–Schmidt 375
§8.7. The Main Theorem on the Generic Bifurcation From Simple Zeros 381
§8.8. Applications to Eigenvalue Problems 387
§8.9. Applications to Integral Equations 387
§8.10. Application to Differential Equations 389
§8.11. The Main Theorem on Generic Bifurcation for Multiparametric Operator Equations—The Bunch Theorem 391
§8.12. Main Theorem for Regular Semi-linear Equations 398
§8.13. Parameter-Induced Oscillation 401
§8.14. Self-Induced Oscillations and Limit Cycles 408
§8.15. Hopf Bifurcation 411
§8.16. The Main Theorem on Generic Bifurcation from Multiple Zeros 416
§8.17. Stability of Bifurcation Solutions 423
§8.18. Generic Point Bifurcation 428

CHAPTER 9
Fixed Points of Multivalued Maps
§9.1. Generalized Banach Fixed-Point Theorem 449
§9.2. Upper and Lower Semi-continuity of Multivalued Maps 450
§9.3. Generalized Schauder Fixed-Point Theorem 452
§9.4. Variational Inequalities and the Browder Fixed-Point Theorem 453
§9.5. An Extremal Principle 456
§9.6. The Minimax Theorem and Saddle Points 457
§9.7. Applications in Game Theory 461
§9.8. Selections and the Marriage Theorem 463
Contents

CHAPTER 10
Nonexpansive Operators and Iterative Methods

- §10.1. Uniformly Convex B-spaces 474
- §10.2. Demiclosed Operators 476
- §10.3. The Fixed-Point Theorem of Browder, Gohde, and Kirk 478
- §10.4. Demicompact Operators 479
- §10.5. Convergence Principles in B-spaces 480
- §10.6. Modified Successive Approximations 481
- §10.7. Application to Periodic Solutions 482

CHAPTER 11
Condensing Maps and the Bourbaki–Kneser Fixed-Point Theorem

- §11.1. A Noncompactness Measure 492
- §11.2. Applications to Generalized Interval Nesting 495
- §11.3. Condensing Maps 496
- §11.4. Operators with Closed Range and an Approximation Technique for Constructing Fixed Points 497
- §11.5. Sadovskii’s Fixed-Point Theorem for Condensing Maps 500
- §11.6. Fixed-Point Theorems for Perturbed Operators 501
- §11.7. Application to Differential Equations in B-spaces 502
- §11.8. The Bourbaki–Kneser Fixed-Point Theorem 503
- §11.9. The Fixed-Point Theorems of Amann and Tarski 506
- §11.10. Application to Interval Arithmetic 508
- §11.11. Application to Formal Languages 510

THE MAPPING DEGREE AND THE FIXED-POINT INDEX

CHAPTER 12
The Leray–Schauder Fixed-Point Index

- §12.1. Intuitive Background and Basic Concepts 519
- §12.2. Homotopy 527
- §12.3. The System of Axioms 529
- §12.4. An Approximation Theorem 533
- §12.5. Existence and Uniqueness of the Fixed-Point Index in \mathbb{R}^N 535
- §12.6. Proof of Theorem 12.A. 537
- §12.7. Existence and Uniqueness of the Fixed-Point Index in B-spaces 542
- §12.8. Product Theorem and Reduction Theorem 546
CHAPTER 13
Applications of the Fixed-Point Index 554
§13.1. A General Fixed-Point Principle 555
§13.2. A General Eigenvalue Principle 557
§13.3. Existence of Multiple Solutions 560
§13.4. A Continuum of Fixed Points 564
§13.5. Applications to Differential Equations 566
§13.6. Properties of the Mapping Degree 568
§13.7. The Leray Product Theorem and Homeomorphisms 574
§13.8. The Jordan–Brouwer Separation Theorem and Brouwer’s Invariance of Dimension Theorem 580
§13.9. A Brief Glance at the History of Mathematics 582
§13.10. Topology and Intuition 592
§13.11. Generalization of the Mapping Degree 600

CHAPTER 14
The Fixed-Point Index of Differentiable and Analytic Maps 613
§14.1. The Fixed-Point Index of Classical Analytic Functions 616
§14.2. The Leray–Schauder Index Theorem 618
§14.3. The Fixed-Point Index of Analytic Mappings on Complex B-spaces 621
§14.4. The Schauder Fixed-Point Theorem with Uniqueness 624
§14.5. Solution of Analytic Operator Equations 625
§14.6. The Global Continuation Principle of Leray–Schauder 628
§14.7. Unbounded Solution Components 630
§14.8. Applications to Systems of Equations 633
§14.9. Applications to Integral Equations 633
§14.10. Applications to Boundary-Value Problems 634
§14.11. Applications to Integral Power Series 634

CHAPTER 15
Topological Bifurcation Theory 653
§15.1. The Index Jump Principle 657
§15.2. Applications to Systems of Equations 657
§15.3. Duality Between the Index Jump Principle and the Leray–Schauder Continuation Principle 658
§15.4. The Geometric Heart of the Continuation Method 661
§15.5. Stability Change and Bifurcation 663
§15.6. Local Bifurcation 665
§15.7. Global Bifurcation 667
§15.8. Application to Systems of Equations 669
§15.9. Application to Integral Equations 670
§15.10. Application to Differential Equations 671
§15.11. Application to Bifurcation at Infinity 673
§15.12. Proof of the Main Theorem 675
§15.13. Preventing Secondary Bifurcation 681