Edited by
DALE PURVES
GEORGE J. AUGUSTINE
DAVID FITZPATRICK
LAWRENCE C. KATZ
ANTHONY-SAMUEL LAMANTIA
JAMES O. McNAMARA

Department of Neurobiology
Duke University Medical Center
Contents
in Brief

1 The Organization of the Nervous System 1

2 Electrical Signals of Nerve Cells 37
3 Voltage-Dependent Membrane Permeability 51
4 Channels and Pumps 69
5 Synaptic Transmission 85
6 Neurotransmitters 99
7 Neurotransmitter Receptors and Their Effects 121

I. Neural Signaling

8 The Somatic Sensory System 147
9 Pain 165
10 Vision: The Eye 179
11 Central Visual Pathways 199
12 The Auditory System 223
13 The Vestibular System 245
14 The Chemical Senses 263

II. Sensation and Sensory Processing

15 Spinal Cord Circuits and Motor Control 291
16 Descending Control of Spinal Cord Circuitry 311
17 Modulation of Movement by the Basal Ganglia and Cerebellum 329
18 Cellular Mechanisms of Motor Modulation 345
19 Eye Movements and Sensory-Motor Integration 361

III. Movement and Its Central Control

20 Early Brain Development 377
21 Construction of Neural Circuits 395
22 Modification of Developing Brain Circuits by Neural Activity 419
23 Plasticity in the Adult Nervous System 439

IV. The Changing Brain

24 Cognition 465
25 Language and Lateralization 483
26 Sleep and Wakefulness 497
27 Emotions 513
28 Sex, Sexuality, and the Brain 529
29 Human Memory 549

V. Complex Brain Functions
Contents

Preface xviii
Acknowledgments xix

1. The Organization of the Nervous System 1
Overview 1
The Nervous System Is Made Up of Cells 1
Nerve Cells 2
Neuroglial Cells 4
Neural Circuits and Systems 5
The Basic Anatomical Subdivisions of the Nervous System 6
The External Anatomy of the Cerebral Hemispheres 10
The External Anatomy of the Diencephalon and Brainstem 13
The External Anatomy of the Spinal Cord 18
The Internal Anatomy of the Cerebral Hemispheres and Diencephalon 19
The Internal Anatomy of the Brainstem and Spinal Cord 24
The Ventricular System 25
The Meninges 27
The Blood Supply of the Brain and Spinal Cord 27
Summary 34
Additional Reading 34

2. Electrical Signals of Nerve Cells 37
Overview 37
Electrical Potentials Across Nerve Cell Membranes 37
How Ionic Movements Produce Electrical Signals 39
The Forces that Create Membrane Potentials 41
Electrochemical Equilibrium in a Multi-Ion Environment 43
The Ionic Basis of the Resting Membrane Potential 44
The Ionic Basis of Action Potentials 47
Summary 50
Additional Reading 50

3. Voltage-Dependent Membrane Permeability 51
Overview 51
Ionic Currents Across Nerve Cell Membranes 51
Two Types of Voltage-Dependent Ionic Current 53
Two Voltage-Dependent Membrane Conductances 56
Reconstruction of the Action Potential 58

Unit I
Neural Signaling

BOX A The Remarkable Giant Nerve Cells of Squid 46
BOX B Action Potential Form and Nomenclature 49

BOX A The Autonomic Nervous System 8
BOX B Some Anatomical Terminology 12
BOX C Brain Imaging Techniques 22
BOX D The Blood-Brain Barrier 31
BOX E Imaging Techniques Based on Blood Flow: PET, SPECT, and fMRI 32

Additional Reading
7. Neurotransmitter Receptors and Their Effects 121

Overview 121
Neurotransmitter Receptors Alter Postsynaptic Membrane Permeability 121
Principles Derived from Studies of the Neuromuscular Junction 121
Excitatory and Inhibitory Postsynaptic Potentials 127
Summation of Synaptic Potentials 129
Two Families of Postsynaptic Receptors 130
Ligand-Gated Ion Channels: Fast-Acting Cholinergic Receptors 131
Ligand-Gated Ion Channels: Fast-Acting Glutamate Receptors 135
Ligand-Gated Ion Channels: GABA and Glycine Receptors 137
Other Ligand-Gated Ion Channels 138
Metabotropic Receptors and the Activation of G-Proteins 138
Direct Modulation of Ion Channels by G-Proteins 139
Indirect Modulation by Intracellular Messenger Pathways 140
Postsynaptic Responses Involving Gene Expression 141
Summary 143
Additional Reading 144

8. The Somatic Sensory System 147

Overview 147
Cutaneous and Subcutaneous Somatic Sensory Receptors 147
Mechanoreceptors Specialized to Receive Tactile Information 149
Differences in Mechanosensory Discrimination Across the Body Surface 151
Mechanoreceptors Specialized for Proprioception 152
Active Tactile Exploration 154
The Major Mechanosensory Pathway: The Dorsal Column-Medial Lemniscus System 154
The Trigeminal Portion of the Mechanosensory System 156
The Somatic Sensory Components of the Thalamus 158
The Somatic Sensory Cortex 159
Higher-Order Cortical Representations 162
Summary 162
Additional Reading 163

9. Pain 165

Overview 165
Nociceptors 165
The Perception of Pain 166
Integrating Information from the Two Ears 236
Monaural Pathways from the Cochlear Nucleus to the Lateral Lemniscus 239
Integration in the Inferior Colliculus 240
The Auditory Thalamus 240
The Auditory Cortex 241
Summary 243
Additional Reading 243

13. The Vestibular System 245
Overview 245
The Vestibular Labyrinth 245
Vestibular Hair Cells 245
The Otolith Organs 250
How Otolith Neurons Sense Linear Forces 250
The Semicircular Canals 253
How Semicircular Canal Neurons Sense Angular Accelerations 255
Central Vestibular Pathways: Eye, Head, and Body Reflexes 256
Vestibular Pathways to the Thalamus and Cortex 258
Summary 262
Additional Reading 262

BOX A A Primer on (Vestibular) Navigation 246
BOX B Adaptation and Tuning of Vestibular Hair Cells 248
BOX C Throwing Cold Water on the Vestibular System 260

14. The Chemical Senses 263
Overview 263
The Organization of the Olfactory System 263
Olfactory Perception in Humans 263
The Olfactory Epithelium and Olfactory Receptor Neurons 266
The Transduction of Olfactory Signals 267
Specificity of Odorant Detection: Odorant Receptors 269
Neural Coding in the Olfactory System 269
Central Processing of Olfactory Signals 271
The Organization of the Taste System 273
Taste Perception in Humans 276
The Organization of the Peripheral Taste System 277
Responses to Tastants 279
Taste Receptors and the Transduction of Taste Signals 280
Neural Coding in the Taste System 282
Central Processing of Taste Signals 284
Trigeminal Chemoreception 284
Summary 287
Additional Reading 287

BOX A Mapping the Sense of Smell 274
BOX B Capsaicin 285

15. Spinal Cord Circuits and Motor Control 291
Overview 291
Neural Structures Responsible for Movement 291

Unit III
Movement and Its Central Control
16. Descending Control of Spinal Cord Circuitry 311
Overview 311
The Organization and Descending Control of Medial and Lateral Spinal Cord Circuitry 311
Some General Points About Brainstem Projections to the Spinal Cord 312
The Vestibular Nucleus and Reticular Formation: Maintaining Balance and Posture 312
The Motor Cortex 315
Descending Projections from the Motor Cortex 319
Damage to Descending Motor Pathways: The Upper Motor Neuron Syndrome 325
Summary 327
Additional Reading 327

17. Modulation of Movement by the Basal Ganglia and Cerebellum 329
Overview 329
Sensory Information and Motor Commands 329
Basal Ganglia Lesions: Deficits in the Initiation of Movement 331
Cerebellar Lesions: Deficits in Coordinating and Terminating Movements 332
The Structural Elements of the Basal Ganglia and Cerebellum 335
Projections to the Basal Ganglia 336
Projections to the Cerebellum 339
Projections from the Basal Ganglia 340
Projections from the Cerebellum 342
Summary 343
Additional Reading 344

18. Mechanisms of Motor Modulation 345
Overview 345
Neurons and Circuits in the Basal Ganglia and Cerebellum 345
Disinhibition: Direct and Indirect Pathways Through the Basal Ganglia 348
An Explanation of Parkinson’s and Huntington’s Diseases in Terms of Basal Ganglia Circuitry 350
19. Eye Movements and Sensory-Motor Integration 361

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>361</td>
</tr>
<tr>
<td>What Eye Movements Accomplish</td>
<td>361</td>
</tr>
<tr>
<td>The Actions and Innervation of Extraocular Muscles</td>
<td>362</td>
</tr>
<tr>
<td>Types of Eye Movements and Their Functions</td>
<td>365</td>
</tr>
<tr>
<td>The Neural Control of Saccadic Eye Movements</td>
<td>367</td>
</tr>
<tr>
<td>Neural Control of Smooth Pursuit Movements</td>
<td>371</td>
</tr>
<tr>
<td>The Role of the Cerebellum and Basal Ganglia in Eye Movements</td>
<td>371</td>
</tr>
<tr>
<td>Summary</td>
<td>373</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>374</td>
</tr>
</tbody>
</table>

20. Early Brain Development 377

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>377</td>
</tr>
<tr>
<td>The Initial Formation of the Nervous System: Gastrulation and Neurulation</td>
<td>377</td>
</tr>
<tr>
<td>The Molecular Basis of Neural Induction</td>
<td>379</td>
</tr>
<tr>
<td>The Formation of the Major Brain Subdivisions</td>
<td>381</td>
</tr>
<tr>
<td>The Initial Differentiation of Neurons and Glia</td>
<td>385</td>
</tr>
<tr>
<td>The Generation of Neuronal Diversity</td>
<td>386</td>
</tr>
<tr>
<td>Neuronal Migration</td>
<td>391</td>
</tr>
<tr>
<td>Summary</td>
<td>393</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>394</td>
</tr>
</tbody>
</table>

21. Construction of Neural Circuits 395

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>395</td>
</tr>
<tr>
<td>Axon Outgrowth and Pathfinding</td>
<td>395</td>
</tr>
<tr>
<td>Fixed Signals for Axon Guidance: Extracellular Matrix and Cell Surface Molecules</td>
<td>396</td>
</tr>
<tr>
<td>Diffusible Signals for Axon Guidance: Chemotropic Factors</td>
<td>398</td>
</tr>
<tr>
<td>Negative Regulation of Axon Growth: Inhibitors and Chemorepellents</td>
<td>400</td>
</tr>
<tr>
<td>The Formation of Topographical Maps: Recognition Molecules</td>
<td>401</td>
</tr>
<tr>
<td>Selective Synapse Formation</td>
<td>406</td>
</tr>
<tr>
<td>Trophic Interactions and the Ultimate Size of Neuronal Populations</td>
<td>407</td>
</tr>
<tr>
<td>Trophic Interactions and the Formation of Neuronal Connections</td>
<td>410</td>
</tr>
<tr>
<td>A Molecular Paradigm for Trophic Interactions: The Neurotrophins</td>
<td>410</td>
</tr>
<tr>
<td>Neurotrophin Receptors</td>
<td>413</td>
</tr>
<tr>
<td>The Effect of NGF on the Differentiation of Neuronal Form</td>
<td>415</td>
</tr>
<tr>
<td>A General Scheme for the Action of Trophic Molecules</td>
<td>416</td>
</tr>
</tbody>
</table>

Unit IV

The Changing Brain

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX A Retinoic Acid: Teratogen and Inductive Signal</td>
<td>380</td>
</tr>
<tr>
<td>BOX B Homeotic Genes and Human Brain Development</td>
<td>382</td>
</tr>
<tr>
<td>BOX C Rhombomeres</td>
<td>384</td>
</tr>
<tr>
<td>BOX D Neuronal Birthdating</td>
<td>389</td>
</tr>
</tbody>
</table>
22. Modification of Developing Brain Circuits by Neural Activity 419

Overview 419
Insights From the Development of Peripheral Synapses 419
Development of Ocular Dominance Columns in the Visual Cortex 420
Effects of Visual Deprivation on Ocular Dominance 425
How Neuronal Activity Affects the Development of Neural Circuits 429
Molecular Mechanisms of Activity-Driven Competition 433
The Significance of Critical Periods 434
Critical Periods for the Development of Human Behavior 435
Summary 436
Additional Reading 437

Box A Why Neurons Have Dendrites 421
Box B Direct Observation of Synaptic Rearrangement in Developing Muscle 422
Box C Transneuronal Labeling with Radioactive Amino Acids 424
Box D Prenatal Activity and Circuit Formation 431
Box E Built-In Behaviors 435

23. Plasticity in the Adult Nervous System 439

Overview 439
Short-Term Synaptic Plasticity 439
Long-Term Potentiation 440
The Molecular Basis of LTP 447
Long-Term Depression 449
LTP and Epilepsy 451
Mechanisms of Synaptic Plasticity in "Simple" Nervous Systems 451
Common Themes in Adult Plasticity 457
Cortical Plasticity in Adult Animals 458
Summary 461
Additional Reading 461

Box A Why the Hippocampus? 442
Box B Brain Slices 444
Box C Long-Term Depression in the Cerebellum 452
Box D Epilepsy 454

24. Cognition 465

Overview 465
The Association Cortices 465
Differences Between the Association Cortices and the Rest of the Neocortex 467
Lesions of the Parietal Lobe: Attention Deficits 470
Lesions of the Temporal Lobe: Deficits of Recognition 472
Lesions of the Frontal Lobe: Planning Deficits 474
"Attention Neurons" in the Parietal Cortex 474
"Recognition Neurons" in the Temporal Cortex 478
"Planning Neurons" in the Frontal Cortex 479
Summary 480
Additional Reading 482

Unit V Complex Brain Functions

Box A A More Detailed Look at Cortical Lamination 468
Box B Neuropsychological Testing 476
25. Language and Lateralization 483
Overview 483
Language is Both Localized and Lateralized 483
Aphasia 484
A Dramatic Confirmation of Language Lateralization 485
Anatomical Asymmetries Between the Right and Left Hemispheres 487
Mapping Language Function 490
The Development of Language Skills 493
Sign Language 494
Summary 495
Additional Reading 496

26. Sleep and Wakefulness 497
Overview 497
Sleep as an Active State 497
Non-REM Sleep 497
REM Sleep 499
Dreaming and the Possible Functions of REM Sleep 501
Sleep Deprivation 503
Styles of Sleep Among Different Species 503
Biological Clocks 504
Brainstem Mechanisms of Sleep and Wakefulness 506
Summary 511
Additional Reading 511

27. Emotions 513
Overview 513
Physiological Changes Associated with Emotion 513
The Integration of Emotional Behavior 514
The Limbic System 518
The Influence of the Amygdala on Emotional Behavior 521
The Neocortex and Emotional Expression 524
Summary 526
Additional Reading 527

28. Sex, Sexuality, and the Brain 529
Overview 529
Sexually Dimorphic Behavior 529
Definitions of Sex 531
Hormonal Influences on Sexual Dimorphism 532
The Effect of Estrogens on Neural Circuitry 535
Central Nervous System Dimorphisms Related to Relatively Simple Sexual Behaviors 536

BOX A Do Apes Have Language? 489
BOX B Handedness 492

BOX A Electroencephalography 500
BOX B Molecular Mechanisms of Biological Clocks 507
BOX C Sleep Factors 508
BOX D Consciousness 510

BOX A The Hypothalamus 516
BOX B The Amygdala 520
BOX C The Reasoning Behind an Important Discovery 522
BOX D Affective Disorders 525

BOX A The Development of Male and Female Phenotypes 530
BOX B The Actions of Sex Hormones 534
29. Human Memory 549
Overview 549
Qualitative Categories of Human Memory 549
Temporal Categories of Memory 549
Forgetting 551
The Human Capacity for Information Storage 553
Brain Systems Underlying Declarative and Procedural Memories 554
The Long-Term Storage of Information 558
Memory and Aging 559
Summary 560
Additional Reading 562

Glossary G1
Illustration Credits C1
Index II