Design and Analysis of Experiments

With 83 Illustrations
Contents

Preface

1. Principles and Techniques 1

1.1. Design: Basic Principles and Techniques 1
 1.1.1. The Art of Experimentation 1
 1.1.2. Replication 2
 1.1.3. Blocking 3
 1.1.4. Randomization 3

1.2. Analysis: Basic Principles and Techniques 5

2. Planning Experiments 7

2.1. Introduction 7

2.2. A Checklist for Planning Experiments 7

2.3. A Real Experiment—Cotton-Spinning Experiment 14

2.4. Some Standard Experimental Designs 17
 2.4.1. Completely Randomized Designs 18
 2.4.2. Block Designs 18
 2.4.3. Designs with Two or More Blocking Factors 19
 2.4.4. Split-Plot Designs 21

2.5. More Real Experiments 22
 2.5.1. Soap Experiment 22
 2.5.2. Battery Experiment 26
 2.5.3. Cake-Baking Experiment 29

Exercises 31

3. Designs with One Source of Variation 33

3.1. Introduction 33

3.2. Randomization 34

3.3. Model for a Completely Randomized Design 35

3.4. Estimation of Parameters 37
Contents

3.4.1. Estimable Functions of Parameters .. 37
3.4.2. Notation ... 37
3.4.3. Obtaining Least Squares Estimates .. 38
3.4.4. Properties of Least Squares Estimators ... 40
3.4.5. Estimation of σ^2 .. 42
3.4.6. Confidence Bound for σ^2 ... 43
3.5. One-Way Analysis of Variance .. 44
 3.5.1. Testing Equality of Treatment Effects ... 44
 3.5.2. Use of p-Values .. 48
3.6. Sample Sizes .. 49
 3.6.1. Expected Mean Squares for Treatments ... 50
 3.6.2. Sample Sizes Using Power of a Test .. 51
3.7. A Real Experiment—Soap Experiment, Continued .. 53
 3.7.1. Checklist, Continued .. 53
 3.7.2. Data Collection and Analysis .. 54
 3.7.3. Discussion by the Experimenter ... 56
 3.7.4. Further Observations by the Experimenter ... 56
3.8. Using SAS Software ... 57
 3.8.1. Randomization .. 57
 3.8.2. Analysis of Variance .. 58
Exercises ... 61

4. Inferences for Contrasts and Treatment Means

4.1. Introduction ... 67
4.2. Contrasts ... 68
 4.2.1. Pairwise Comparisons ... 69
 4.2.2. Treatment Versus Control .. 70
 4.2.3. Difference of Averages .. 70
 4.2.4. Trends ... 71
4.3. Individual Contrasts and Treatment Means .. 73
 4.3.1. Confidence Interval for a Single Contrast ... 73
 4.3.2. Confidence Interval for a Single Treatment Mean 75
 4.3.3. Hypothesis Test for a Single Contrast or Treatment Mean 75
4.4. Methods of Multiple Comparisons .. 78
 4.4.1. Multiple Confidence Intervals .. 78
 4.4.2. Bonferroni Method for Preplanned Comparisons 80
 4.4.3. Scheffé Method of Multiple Comparisons .. 83
 4.4.4. Tukey Method for All Pairwise Comparisons ... 85
 4.4.5. Dunnett Method for Treatment-Versus-Control Comparisons 87
 4.4.6. Hsu Method for Multiple Comparisons with the Best Treatment 89
 4.4.7. Combination of Methods .. 91
 4.4.8. Methods Not Controlling Experimentwise Error Rate 92
4.5. Sample Sizes ... 92
4.6. Using SAS Software .. 94
 4.6.1. Inferences on Individual Contrasts 94
 4.6.2. Multiple Comparisons 96
Exercises ... 97

5. Checking Model Assumptions 103
 5.1. Introduction ... 103
 5.2. Strategy for Checking Model Assumptions 104
 5.2.1. Residuals 104
 5.2.2. Residual Plots 105
 5.3. Checking the Fit of the Model 107
 5.4. Checking for Outliers 107
 5.5. Checking Independence of the Error Terms 109
 5.6. Checking the Equal Variance Assumption 111
 5.6.1. Detection of Unequal Variances 112
 5.6.2. Data Transformations to Equalize Variances 113
 5.6.3. Analysis with Unequal Error Variances 116
 5.7. Checking the Normality Assumption 119
 5.8. Using SAS Software 122
 5.8.1. Using SAS to Generate Residual Plots 122
 5.8.2. Transforming the Data 126
Exercises ... 127

6. Experiments with Two Crossed Treatment Factors 135
 6.1. Introduction ... 135
 6.2. Models and Factorial Effects 136
 6.2.1. The Meaning of Interaction 136
 6.2.2. Models for Two Treatment Factors 138
 6.2.3. Checking the Assumptions on the Model 140
 6.3. Contrasts .. 141
 6.3.1. Contrasts for Main Effects and Interactions 141
 6.3.2. Writing Contrasts as Coefficient Lists 143
 6.4. Analysis of the Two-Way Complete Model 145
 6.4.1. Least Squares Estimators for the Two-Way Complete Model 146
 6.4.2. Estimation of σ^2 for the Two-Way Complete Model ... 147
 6.4.3. Multiple Comparisons for the Complete Model 149
 6.4.4. Analysis of Variance for the Complete Model 152
 6.5. Analysis of the Two-Way Main-Effects Model 158
 6.5.1. Least Squares Estimators for the Main-Effects Model 158
 6.5.2. Estimation of σ^2 in the Main-Effects Model ... 162
 6.5.3. Multiple Comparisons for the Main-Effects Model ... 163
 6.5.4. Unequal Variances 165
Contents

6.5.5. Analysis of Variance for Equal Sample Sizes ... 165
6.5.6. Model Building ... 168
6.6. Calculating Sample Sizes ... 168
6.7. Small Experiments ... 169
6.7.1. One Observation per Cell .. 169
6.7.2. Analysis Based on Orthogonal Contrasts .. 169
6.7.3. Tukey's Test for Additivity .. 172
6.7.4. A Real Experiment—Air Velocity Experiment ... 173
6.8. Using SAS Software ... 175
6.8.1. Contrasts and Multiple Comparisons ... 177
6.8.2. Plots ... 181
6.8.3. One Observation per Cell ... 182
Exercises ... 183

7. Several Crossed Treatment Factors .. 193
7.1. Introduction ... 193
7.2. Models and Factorial Effects ... 194
7.2.1. Models .. 194
7.2.2. The Meaning of Interaction .. 195
7.2.3. Separability of Factorial Effects ... 197
7.2.4. Estimation of Factorial Contrasts .. 199
7.3. Analysis—Equal Sample Sizes ... 201
7.4. A Real Experiment—Popcorn-Microwave Experiment 205
7.5. One Observation per Cell .. 211
7.5.1. Analysis Assuming That Certain Interaction Effects Are Negligible 211
7.5.2. Analysis Using Normal Probability Plot of Effect Estimates 213
7.5.3. Analysis Using Confidence Intervals ... 215
7.6. Design for the Control of Noise Variability ... 217
7.6.1. Analysis of Design-by-Noise Interactions ... 218
7.6.2. Analyzing the Effects of Design Factors on Variability 221
7.7. Using SAS Software ... 223
7.7.1. Normal Probability Plots of Contrast Estimates 224
7.7.2. Voss–Wang Confidence Interval Method ... 224
7.7.3. Identification of Robust Factor Settings .. 226
7.7.4. Experiments with Empty Cells ... 227
Exercises ... 231

8. Polynomial Regression .. 243
8.1. Introduction ... 243
8.2. Models .. 244
8.3. Least Squares Estimation (Optional) .. 248
8.3.1. Normal Equations .. 248
10.4.2. Multiple Comparisons .. 305
10.5. A Real Experiment—Cotton-Spinning Experiment 306
 10.5.1. Design Details ... 306
 10.5.2. Sample-Size Calculation 307
 10.5.3. Analysis of the Cotton-Spinning Experiment 307
10.6. Analysis of General Complete Block Designs 309
 10.6.1. Model and Analysis of Variance 309
 10.6.2. Multiple Comparisons for the General Complete Block Design .. 312
 10.6.3. Sample-Size Calculations 315
10.7. Checking Model Assumptions 316
10.8. Factorial Experiments .. 317
10.9. Using SAS Software ... 320
 Exercises ... 324

11. Incomplete Block Designs .. 339
 11.1. Introduction .. 339
 11.2. Design Issues ... 340
 11.2.1. Block Sizes .. 340
 11.2.2. Design Plans and Randomization 340
 11.2.3. Estimation of Contrasts (Optional) 342
 11.2.4. Balanced Incomplete Block Designs 343
 11.2.5. Group Divisible Designs 345
 11.2.6. Cyclic Designs .. 346
 11.3. Analysis of General Incomplete Block Designs 348
 11.3.1. Contrast Estimators and Multiple Comparisons 348
 11.3.2. Least Squares Estimation (Optional) 351
 11.4. Analysis of Balanced Incomplete Block Designs 354
 11.4.1. Multiple Comparisons and Analysis of Variance 354
 11.4.2. A Real Experiment—Detergent Experiment 355
 11.5. Analysis of Group Divisible Designs 360
 11.5.1. Multiple Comparisons and Analysis of Variance 360
 11.6. Analysis of Cyclic Designs 362
 11.7. A Real Experiment—Plasma Experiment 362
 11.8. Sample Sizes ... 368
 11.9. Factorial Experiments 369
 11.9.1. Factorial Structure 369
 11.10. Using SAS Software ... 372
 11.10.1. Analysis of Variance and Estimation of Contrasts ... 372
 11.10.2. Plots ... 377
 Exercises ... 378
12. Designs with Two Blocking Factors

12.1. Introduction ... 387
12.2. Design Issues ... 388
 12.2.1. Selection and Randomization of Row–Column Designs 388
 12.2.2. Latin Square Designs 389
 12.2.3. Youden Designs .. 391
 12.2.4. Cyclic and Other Row–Column Designs 392
12.3. Model for a Row–Column Design 394
12.4. Analysis of Row–Column Designs (Optional) 395
 12.4.1. Least Squares Estimation (Optional) 395
 12.4.2. Solution for Complete Column Blocks (Optional) 397
 12.4.3. Formula for ssE (Optional) 398
 12.4.4. Analysis of Variance for a Row–Column Design (Optional) 399
 12.4.5. Confidence Intervals and Multiple Comparisons 401
12.5. Analysis of Latin Square Designs 401
 12.5.1. Analysis of Variance for Latin Square Designs 401
 12.5.2. Confidence Intervals for Latin Square Designs 403
 12.5.3. How Many Observations? 405
12.6. Analysis of Youden Designs 406
 12.6.1. Analysis of Variance for Youden Designs 406
 12.6.2. Confidence Intervals for Youden Designs 407
12.7. Analysis of Cyclic and Other Row–Column Designs 408
12.8. Checking the Assumptions on the Model 409
12.9. Factorial Experiments in Row–Column Designs 410
12.10. Using SAS Software 410
 12.10.1. Factorial Model 413
 12.10.2. Plots .. 415
Exercises ... 415

13. Confounded Two-Level Factorial Experiments 421

13.1. Introduction ... 421
13.2. Single replicate factorial experiments 422
 13.2.1. Coding and notation 422
 13.2.2. Confounding .. 422
 13.2.3. Analysis ... 423
13.3. Confounding Using Contrasts 424
 13.3.1. Contrasts ... 424
 13.3.2. Experiments in Two Blocks 425
 13.3.3. Experiments in Four Blocks 430
 13.3.4. Experiments in Eight Blocks 432
 13.3.5. Experiments in More Than Eight Blocks 433
13.4. Confounding Using Equations ... 433
 13.4.1. Experiments in Two Blocks .. 433
 13.4.2. Experiments in More Than Two Blocks 435
13.5. A Real Experiment—Mangold Experiment 437
13.6. Plans for Confounded 2^p Experiments 441
13.7. Multireplicate Designs ... 441
 13.8.1. A Real Experiment—Decontamination Experiment 442
13.9. Partial Confounding .. 446
13.10. Comparing the Multireplicate Designs 449
13.11. Using SAS Software ... 452
 Exercises ... 454

14. Confounding in General Factorial Experiments 461
 14.1. Introduction ... 461
 14.2. Confounding with Factors at Three Levels 462
 14.2.1. Contrasts .. 462
 14.2.2. Confounding Using Contrasts 463
 14.2.3. Confounding Using Equations 464
 14.2.4. A Real Experiment—Dye Experiment 467
 14.2.5. Plans for Confounded 3^p Experiments 470
 14.3. Designing Using Pseudofactors 471
 14.3.1. Confounding in 4^p Experiments 471
 14.3.2. Confounding in $2^p \times 4^q$ Experiments 472
 14.4. Designing Confounded Asymmetrical Experiments 472
 14.5. Using SAS Software .. 475
 Exercises ... 477

15. Fractional Factorial Experiments ... 483
 15.1. Introduction .. 483
 15.2. Fractions from Block Designs; Factors with 2 Levels 484
 15.2.1. Half-Fractions of 2^p Experiments; 2^{p-1} Experiments 484
 15.2.2. Resolution and Notation .. 487
 15.2.3. A Real Experiment—Soup Experiment 487
 15.2.4. Quarter-Fractions of 2^p Experiments; 2^{p-2} Experiments 490
 15.2.5. Smaller Fractions of 2^p Experiments 494
 15.3. Fractions from Block Designs; Factors with 3 Levels 496
 15.3.1. One-Third Fractions of 3^p Experiments; 3^{p-1} Experiments 496
 15.3.2. One-Ninth Fractions of 3^p Experiments; 3^{p-2} Experiments 501
 15.4. Fractions from Block Designs; Other Experiments 501
 15.4.1. $2^p \times 4^q$ Experiments 501
 15.4.2. $2^p \times 3^q$ Experiments 502
 15.5. Blocked Fractional Factorial Experiments 503
15.6. Fractions from Orthogonal Arrays

15.6.1. \(2^p\) Orthogonal Arrays

15.6.2. Saturated Designs

15.6.3. \(2^p \times 4^q\) Orthogonal Arrays

15.6.4. \(3^p\) Orthogonal Arrays

15.7. Design for the Control of Noise Variability

15.7.1. A Real Experiment—Inclinometer Experiment

15.8. Using SAS Software

15.8.1. Fractional Factorials

15.8.2. Design for the Control of Noise Variability

Exercises

16. Response Surface Methodology

16.1. Introduction

16.2. First-Order Designs and Analysis

16.2.1. Models

16.2.2. Standard First-Order Designs

16.2.3. Least Squares Estimation

16.2.4. Checking Model Assumptions

16.2.5. Analysis of Variance

16.2.6. Tests for Lack of Fit

16.2.7. Path of Steepest Ascent

16.3. Second-Order Designs and Analysis

16.3.1. Models and Designs

16.3.2. Central Composite Designs

16.3.3. Generic Test for Lack of Fit of the Second-Order Model

16.3.4. Analysis of Variance for a Second-Order Model

16.3.5. Canonical Analysis of a Second-Order Model

16.4. Properties of Second-Order Designs: CCDs

16.4.1. Rotatability

16.4.2. Orthogonality

16.4.3. Orthogonal Blocking

16.5. A Real Experiment: Flour Production Experiment, Continued

16.6. Box–Behnken Designs

16.7. Using SAS Software

16.7.1. Analysis of a Standard First-Order Design

16.7.2. Analysis of a Second-Order Design

Exercises

17. Random Effects and Variance Components

17.1. Introduction

17.2. Some Examples

17.3. One Random Effect
17.3.1. The Random-Effects One-Way Model ... 596
17.3.2. Estimation of σ^2 ... 597
17.3.3. Estimation of σ_T^2 ... 598
17.3.4. Testing Equality of Treatment Effects ... 601
17.3.5. Confidence Intervals for Variance Components 603
17.4. Sample Sizes for an Experiment with One Random Effect 607
17.5. Checking Assumptions on the Model .. 610
17.6. Two or More Random Effects ... 610
 17.6.1. Models and Examples ... 610
 17.6.2. Checking Model Assumptions ... 613
 17.6.3. Estimation of σ^2 ... 613
 17.6.4. Estimation of Variance Components .. 614
 17.6.5. Confidence Intervals for Variance Components 616
 17.6.6. Hypothesis Tests for Variance Components 620
 17.6.7. Sample Sizes ... 622
17.7. Mixed Models .. 622
 17.7.1. Expected Mean Squares and Hypothesis Tests 622
 17.7.2. Confidence Intervals in Mixed Models .. 625
17.8. Rules for Analysis of Random and Mixed Models 627
 17.8.1. Rules—Equal Sample Sizes ... 627
 17.8.2. Controversy (Optional) ... 628
17.9. Block Designs and Random Blocking Factors 630
17.10. Using SAS Software .. 632
 17.10.1. Checking Assumptions on the Model .. 632
 17.10.2. Estimation and Hypothesis Testing .. 635
Exercises ... 639
18. Nested Models ... 645
18.1. Introduction ... 645
18.2. Examples and Models .. 646
18.3. Analysis of Nested Fixed Effects ... 648
 18.3.1. Least Squares Estimates ... 648
 18.3.2. Estimation of σ^2 ... 649
 18.3.3. Confidence Intervals ... 650
 18.3.4. Hypothesis Testing ... 650
18.4. Analysis of Nested Random Effects .. 654
 18.4.1. Expected Mean Squares ... 654
 18.4.2. Estimation of Variance Components ... 656
 18.4.3. Hypothesis Testing ... 657
 18.4.4. Some Examples ... 658
18.5. Using SAS Software ... 662
 18.5.1. Voltage Experiment ... 662
Exercises ... 667
19. Split-Plot Designs

19.1. Introduction ... 675
19.2. Designs and Models ... 676
19.3. Analysis of a Split-Plot Design with Complete Blocks 678
 19.3.1. Split-Plot Analysis .. 678
 19.3.2. Whole-Plot Analysis ... 680
 19.3.3. Contrasts Within and Between Whole Plots 681
 19.3.4. A Real Experiment—Oats Experiment 681
19.4. Split-Split-Plot Designs .. 684
19.5. Split-Plot Confounding .. 686
19.6. Using SAS Software .. 687
 Exercises ... 691

A. Tables ... 695

Bibliography ... 725

Index of Authors .. 731

Index of Experiments ... 733

Index of Subjects .. 735