Contents

Preface xv
Acknowledgements xvii

Part A: Meta-Analysis Methodology: The Basics 1

1. Introduction – Meta-analysis: Its Development and Uses 3
 1.1 Evidence-based health care 3
 1.2 Evidence-based everything! 4
 1.3 Pulling together the evidence – systematic reviews 5
 1.4 Why meta-analysis? 8
 1.5 Aim of this book 12
 1.6 Concluding remarks 13
References 13

2. Defining Outcome Measures used for Combining via Meta-analysis 17
 2.1 Introduction 17
 2.2 Non-comparative binary outcomes 18
 2.2.1 Odds 18
 2.2.2 Incidence rates 19
 2.3 Comparative binary outcomes 20
 2.3.1 The Odds ratio 20
 2.3.2 Relative risk (or rate ratio/relative rate) 23
 2.3.3 Risk differences between proportions
 (or the absolute risk reduction) 25
 2.3.4 The number needed to treat 27
 2.3.5 Comparisons of rates 28
 2.3.6 Other scales of measurement used in summarizing
 binary data 28
 2.3.7 Which scale to use? 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Continuous data</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1 Outcomes defined on their original metric (mean difference)</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2 Outcomes defined using standardized mean differences</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Ordinal outcomes</td>
<td>33</td>
</tr>
<tr>
<td>2.5 Summary/Discussion</td>
<td>33</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
<tr>
<td>3. Assessing Between Study Heterogeneity</td>
<td>37</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Hypothesis tests for presence of heterogeneity</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1 Standard χ^2 test</td>
<td>38</td>
</tr>
<tr>
<td>3.2.2 Extensions/alternative tests</td>
<td>39</td>
</tr>
<tr>
<td>3.2.3 Example: Testing for heterogeneity in the cholesterol lowering trial dataset</td>
<td>40</td>
</tr>
<tr>
<td>3.3 Graphical informal tests/explorations of heterogeneity</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1 Plot of normalized (z) scores</td>
<td>41</td>
</tr>
<tr>
<td>3.3.2 Forest plot</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3 Radial plot (Galbraith diagram)</td>
<td>46</td>
</tr>
<tr>
<td>3.3.4 L'Abbé plot</td>
<td>47</td>
</tr>
<tr>
<td>3.4 Possible causes of heterogeneity</td>
<td>48</td>
</tr>
<tr>
<td>3.4.1 Specific factors that may cause heterogeneity in RCTs</td>
<td>49</td>
</tr>
<tr>
<td>3.5 Methods for investigating and dealing with sources of heterogeneity</td>
<td>50</td>
</tr>
<tr>
<td>3.5.1 Change scale of outcome variable</td>
<td>51</td>
</tr>
<tr>
<td>3.5.2 Include covariates in a regression model (meta-regression)</td>
<td>51</td>
</tr>
<tr>
<td>3.5.3 Exclude studies</td>
<td>52</td>
</tr>
<tr>
<td>3.5.4 Analyse groups of studies separately</td>
<td>52</td>
</tr>
<tr>
<td>3.5.5 Use of random effects models</td>
<td>52</td>
</tr>
<tr>
<td>3.5.6 Use of mixed-effect models</td>
<td>53</td>
</tr>
<tr>
<td>3.6 The validity of pooling studies with heterogeneous outcomes</td>
<td>53</td>
</tr>
<tr>
<td>3.7 Summary/Discussion</td>
<td>53</td>
</tr>
<tr>
<td>References</td>
<td>54</td>
</tr>
<tr>
<td>4. Fixed Effects Methods for Combining Study Estimates</td>
<td>57</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>4.2 General fixed effect model – the inverse variance-weighted method</td>
<td>58</td>
</tr>
<tr>
<td>4.2.1 Example: Combining odds ratios using the inverse variance-weighted method</td>
<td>59</td>
</tr>
<tr>
<td>4.2.2 Example: Combining standardized mean differences using a continuous outcome scale</td>
<td>62</td>
</tr>
</tbody>
</table>
4.3 Specific methods for combining odds ratios
 4.3.1 Mantel–Haenszel method for combining odds ratios
 4.3.2 Peto’s method for combining odds ratios
 4.3.3 Combining odds ratios via maximum-likelihood techniques
 4.3.4 Exact methods of interval estimation
 4.3.5 Discussion of the relative merits of each method

4.4 Summary/Discussion

References

5. Random Effects Models for Combining Study Estimates

5.1 Introduction

5.2 Algebraic derivation for random effects models by the weighted method

5.3 Maximum likelihood and restricted maximum likelihood estimate solutions

5.4 Comparison of estimation methods

5.5 Example: Combining the cholesterol lowering trials using a random effects model

5.6 Extensions to the random effects model
 5.6.1 Including uncertainty induced by estimating the between study variance
 5.6.2 Exact approach to random effects meta-analysis of binary data
 5.6.3 Miscellaneous extensions to the random effects model

5.7 Comparison of random with fixed effect models

5.8 Summary/Discussion

References

6. Exploring Between Study Heterogeneity

6.1 Introduction

6.2 Subgroup analyses
 6.2.1 Example: Stratification by study characteristics
 6.2.2 Example: Stratification by patient characteristics

6.3 Regression models for meta-analysis
 6.3.1 Meta-regression models (fixed-effects regression)
 6.3.2 Meta-regression example: a meta-analysis of Bacillus Calmette-Guérin (BCG) vaccine for the prevention of tuberculosis (TB)
 6.3.3 Mixed effect models (random-effects regression)
 6.3.4 Mixed model example: A re-analysis of Bacillus Calmette-Guérin (BCG) vaccine for the prevention of tuberculosis (TB) trials

References
6.3.5 Mixed modelling extensions
6.4 Summary/Discussion
References

7. Publication Bias

7.1 Introduction
7.2 Evidence of publication and related bias
 7.2.1 Survey of authors
 7.2.2 Published versus registered trials in a meta-analysis
 7.2.3 Follow-up of cohorts of registered studies
 7.2.4 Non-empirical evidence
 7.2.5 Evidence of language bias
7.3 The seriousness and consequences of publication bias for meta-analysis
7.4 Predictors of publication bias (factors effecting the probability a study will get published)
7.5 Identifying publication bias in a meta-analysis
 7.5.1 The funnel plot
 7.5.2 Rank correlation test
 7.5.3 Linear regression test
 7.5.4 Other methods to detect publication bias
 7.5.5 Practical advice on methods for detecting publication bias
7.6 Taking into account publication bias or adjusting the results of a meta-analysis in the presence of publication bias
 7.6.1 Analysing only the largest studies
 7.6.2 Rosenthal's 'file drawer' method
 7.6.3 Models which estimate the number of unpublished studies, but do not adjust
 7.6.4 Selection models using weighted distribution theory
 7.6.5 The 'Trim and Fill' method
 7.6.6 The sensitivity approach of Copas
7.7 Broader perspective solutions to publication bias
 7.7.1 Prospective registration of trials
 7.7.2 Changes in publication process and journals
7.8 Including unpublished information
7.9 Summary/Discussion
References

8. Study Quality

8.1 Introduction
8.2 Methodological factors that may affect the quality of studies
 8.2.1 Experimental studies
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2</td>
<td>Observational Studies</td>
<td>136</td>
</tr>
<tr>
<td>8.3</td>
<td>Incorporating study quality into a meta-analysis</td>
<td>137</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Graphical plot</td>
<td>137</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Cumulative methods</td>
<td>138</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Regression model</td>
<td>138</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Weighting</td>
<td>140</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Excluding studies</td>
<td>142</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Sensitivity analysis</td>
<td>143</td>
</tr>
<tr>
<td>8.4</td>
<td>Practical implementation</td>
<td>143</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary/Discussion</td>
<td>144</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>9.</td>
<td>Sensitivity Analysis</td>
<td>147</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>9.2</td>
<td>Sensitivity of results to inclusion criteria</td>
<td>147</td>
</tr>
<tr>
<td>9.3</td>
<td>Sensitivity of results to meta-analytic methods</td>
<td>150</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Assessing the impact of choice of study weighting</td>
<td>150</td>
</tr>
<tr>
<td>9.4</td>
<td>Summary/Discussion</td>
<td>151</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>10.</td>
<td>Reporting the Results of a Meta-analysis</td>
<td>153</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>10.2</td>
<td>Overview and structure of a report</td>
<td>154</td>
</tr>
<tr>
<td>10.3</td>
<td>Graphical displays used for reporting the findings of a meta-analysis</td>
<td>155</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Forest plots</td>
<td>155</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Radial plots</td>
<td>157</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Funnel plots</td>
<td>157</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Displaying the distribution of effect size estimates</td>
<td>158</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Graphs investigating length of follow-up</td>
<td>158</td>
</tr>
<tr>
<td>10.4</td>
<td>Summary/Discussion</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>158</td>
</tr>
</tbody>
</table>

Part B: Advanced and Specialized Meta-analysis Topics | 161

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Bayesian Methods in Meta-analysis</td>
<td>163</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>163</td>
</tr>
<tr>
<td>11.2</td>
<td>Bayesian methods in health research</td>
<td>163</td>
</tr>
<tr>
<td>11.2.1</td>
<td>General introduction</td>
<td>163</td>
</tr>
<tr>
<td>11.2.2</td>
<td>General advantages/disadvantages of Bayesian methods</td>
<td>166</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Example: Bayesian analysis of a single trial using a normal conjugate model</td>
<td>167</td>
</tr>
</tbody>
</table>
11.3 Bayesian meta-analysis of normally distributed data 169
11.3.1 Example: Combining trials with continuous outcome measures using Bayesian methods 171
11.4 Bayesian meta-analysis of binary data 171
11.4.1 Example: Combining binary outcome measures using Bayesian methods 173
11.5 Empirical Bayes methods in meta-analysis 175
11.6 Advantages/disadvantages of Bayesian methods in meta-analysis 176
11.6.1 Advantages 176
11.6.2 Disadvantages 178
11.7 Extensions and specific areas of application 179
11.7.1 Incorporating study quality 179
11.7.2 Inclusion of covariates 180
11.7.3 Model selection 180
11.7.4 Hierarchical models 181
11.7.5 Sensitivity analysis 181
11.7.6 Comprehensive modelling 182
11.7.7 Other developments 183
11.8 Summary/Discussion 183
References 183

12. Meta-analysis of Individual Patient Data ... 191
12.1 Introduction 191
12.2 Procedural methodology 193
12.2.1 Data collection 193
12.2.2 Checking data 193
12.3 Issues involved in carrying out IPD meta-analyses 193
12.4 Comparing meta-analysis using IPD or summary data? 194
12.5 Combining individual patient and summary data 195
12.6 Summary/Discussion 196
References 196

13. Missing Data ... 199
13.1 Introduction 199
13.2 Reasons for missing data 200
13.3 Categories of missing data at the study level 200
13.4 Analytic methods for dealing with missing data 201
13.4.1 General missing data methods which can be applied in the meta-analysis context 201
13.4.2 Missing data methods specific to meta-analysis 202
13.4.3 Example: Dealing with missing standard deviations of estimates in a meta-analysis 202

References 202
13.5 Bayesian methods for missing data 203
13.6 Summary/Discussion 203
References 204

14. Meta-analysis of Different Types of Data 205
14.1 Introduction 205
14.2 Combining ordinal data 205
14.3 Issues concerning scales of measurement when combining data
14.3.1 Transforming scales, maintaining same data type 206
14.3.2 Binary outcome data reported on different scales 207
14.3.3 Combining studies whose outcomes are reported using different data types 208
14.3.4 Combining summaries of binary outcomes with those of continuous outcomes 208
14.3.5 Non-parametric method of combining different data type effect measures 208
14.4 Meta-analysis of diagnostic test accuracy 209
14.4.1 Combining binary test results 209
14.4.2 Combining ordered categorical test results 215
14.4.3 Combining continuous test results 215
14.5 Meta-analysis using surrogate markers 215
14.6 Combining a number of cross-over trials using the patient preference outcome 216
14.7 Vote-counting methods 217
14.8 Combining p-values/significance levels 218
14.8.1 Minimum p method 219
14.8.2 Sum of z's method 220
14.8.3 Sum of logs method 220
14.8.4 Logit method 220
14.8.5 Other methods of combining significane levels 220
14.8.6 Appraisal of the methods 221
14.8.7 Example of combining p-values 221
14.9 Novel applications of meta-analysis using non-standard methods or data 223
14.10 Summary/Discussion 223
References 223

15. Meta-analysis of Multiple and Correlated Outcome Measures 229
15.1 Introduction 229
15.2 Combining multiple p-values 230
15.3 Method for reducing multiple outcomes to a single measure for each study 231
15.4 Development of a multivariate model

15.4.1 Model of Raudenbush et al. 231
15.4.2 Model of Gleser and Olkin 232
15.4.3 Multiple outcome model for clinical trials 232
15.4.4 Random effect multiple outcome regression model 232
15.4.5 DuMouchel's extended model for multiple outcomes 233
15.4.6 Illustration of the use of multiple outcome models 233

15.5 Summary/Discussion 236

References 236

16. Meta-analysis of Epidemiological and Other Observational Studies . . . 239

16.1 Introduction 239

16.2 Extraction and derivation of study estimates 240

16.2.1 Scales of measurement used to report and combine observational studies 243
16.2.2 Data manipulation for data extraction 243
16.2.3 Methods for transforming and adjusting reported results 244

16.3 Analysis of summary data 246

16.3.1 Heterogeneity of observational studies 246
16.3.2 Fixed or random effects? 247
16.3.3 Weighting of observational studies 247
16.3.4 Methods for combining estimates of observational studies 247
16.3.5 Dealing with heterogeneity and combining the OC and breast cancer studies 248

16.4 Reporting the results of meta-analysis of observational studies 248

16.5 Use of sensitivity and influence analysis 248

16.6 Study quality considerations for observational studies 249

16.7 Other issues concerning meta-analysis of observational studies 250

16.7.1 Analysing individual patient data from observational studies 250
16.7.2 Combining dose-response data 251
16.7.3 Meta-analysis of single case research 253

16.8 Unresolved issues concerning the meta-analysis of observational studies 254

16.9 Summary/Discussion 255

References 255
17. Generalized Synthesis of Evidence – Combining Different Sources of Evidence

17.1 Introduction

17.2 Incorporating single-arm studies: models for incorporating historical controls
 17.2.1 Example

17.3 Combining matched and unmatched data

17.4 Approaches for combining studies containing multiple and/or different treatment arms
 17.4.1 Approach of Gleser and Olkin
 17.4.2 Models of Berkey et al.
 17.4.3 Method of Higgins
 17.4.4 Mixed model of DuMouchel

17.5 The confidence profile method

17.6 Cross-design synthesis
 17.6.1 Beginnings
 17.6.2 Bayesian hierarchical models
 17.6.3 Grouped random effects models of Larose and Dey
 17.6.4 Synthesizing studies with disparate designs to assess the exposure effects on the incidence of a rare adverse event
 17.6.5 Combining the results of cancer studies in humans and other species
 17.6.6 Combining biochemical and epidemiological evidence
 17.6.7 Combining information from disparate toxicological studies using stratified ordinal regression

17.7 Summary/Discussion

References

18. Meta-analysis of Survival Data

18.1 Introduction

18.2 Inferring/estimating and combining (log) hazard ratios

18.3 Calculation of the 'log-rank' odds ratio

18.4 Calculation of pooled survival rates

18.5 Method of Hunink and Wong

18.6 Iterative generalized least squares for meta-analysis of survival data at multiple times
 18.6.1 Application of the model

18.7 Identifying prognostic factors using a log (relative risk) measure
18.8 Combining quality of life adjusted survival data 282
18.9 Meta-analysis of survival data using individual patient data 283
18.9.1 Pooling independent samples of survival data to form an estimator of the common survival function 283
18.9.2 Is obtaining and using survival data necessary? 283
18.10 Summary/Discussion 284
References 284
19. Cumulative Meta-analysis 287
19.1 Introduction 287
19.2 Example: Ordering by date of publication 288
19.3 Using study characteristics other than date of publication 290
19.3.1 Example: Ordering the cholesterol trials by baseline risk in the control group 290
19.4 Bayesian approaches 291
19.5 Issues regarding uses of cumulative meta-analysis 291
19.6 Summary/Discussion 292
References 292
20. Miscellaneous and Developing Areas of Application in Meta-analysis 295
20.1 Introduction 295
20.2 Alternatives to conventional meta-analysis 295
20.2.1 Estimating and extrapolating a response surface 295
20.2.2 Odd man out method 296
20.2.3 Best evidence synthesis 296
20.3 Developing areas 297
20.3.1 Prospective meta-analysis 297
20.3.2 Economic evaluation through meta-analysis 298
20.3.3 Combining meta-analysis and decision analysis 299
20.3.4 Net benefit model synthesizing disparate sources of information 299
References 299

Appendix I: Software Used for the Examples in this Book 301

Subject index... 309